7.2.2018 TS-7970 - Technologic Systems Manuals

From Technologic Systems Manuals

TS-7970

TS-7970

;i 3 2 b o
o - = 2%y |

Product Page (http://www.embeddedarm.com/products/board-detail.php?product=TS-7970)
Product Images (https://www.embeddedarm.com/product-images/TS-7970)
Specifications (https://www.embeddedarm.com/products/TS-7970?tab=specs)
Documentation
Schematic (http://www.embeddedarm.com/documentation/ts-7970-schematic.pdf)
Mechanical Drawing (http://www.embeddedarm.com/documentation/ts-7970-mechanical.pdf)
FTP Path (ftp:/ftp.embeddedarm.com/ts-arm-sbc/ts-7990-linux/)

Processor
NXP 1.MX6 Quad core, or Solo

1.MX6 Quad Product Page (http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-
processors/i.mx-6-processors/i.mx-6quad-processors-high-performance-3d-graphics-hd-video-arm-cortex-a9-core:1. MX6Q)

1.MX6 Solo Product Page (http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-
processors/i.mx-6-processors/i.mx-6solo-processors-single-core-multimedia-3d-graphics-arm-cortex-a9-core:1.MX6S)

IMX6Q Reference Manual (http://cache.freescale.com/files/32bit/doc/ref manual/IMX6DQRM.pdf?

1&WT _TYPE=Reference%20Manuals& WT VENDOR=FREESCALE&WT FILE FORMAT=pdf&WT_ ASSET=Documentation)

IMX6S Reference Manual (http://cache.freescale.com/files/32bit/doc/ref manual/IMX6SDLRM.pdf?

1&WT_ TYPE=Reference%20Manuals&WT VENDOR=FREESCALE&WT FILE FORMAT=pdf&WT_ ASSET=Documentation)

Contents

=] Getting Started
= 1.1 Getting Console and Powering up
= 1.2 First Linux Boot
= 1.3 Comparison of Distributions

= 2 U-Boot

2.1 U-Boot Environment

2.2 U-Boot Commands

2.3 Modify Linux Kernel cmdline

2.4 U-boot Recovery

2.5 Linux NFS Boot

2.6 Update U-Boot

2.7 U-boot Development

2.8 Access U-boot Environment from Linux

= 3 Debian
= 3.1 Getting Started with Debian
= 3.2 Debian Networking
= 3.2.1 Debian WIFI Client
= 3.2.2 Debian WIFI Access Point

= 3.3 Debian Application Development
= 3.3.1 Debian Jessie Cross Compiling

= 3.4 Debian Installing New Software

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

1/75

7.2.2018 TS-7970 - Technologic Systems Manuals

= 3.5 Debian Setting up SSH
= 3.6 Debian Starting Automatically

= 4 Ubuntu
= 4.1 Getting Started with Ubuntu
= 4.2 Ubuntu Networking
= 4.2.1 Ubuntu WIFI Client
= 4.2.2 Ubuntu WIFI Access Point

= 4.3 Ubuntu Installing New Software
= 4.4 Ubuntu Setting up SSH
= 4.5 Ubuntu Starting Automatically

= 5 Ubuntu Core
= 5.1 Getting Started with Ubuntu Core
= 5.2 Ubuntu Core Reference Links

= 6 Yocto
= 6.1 Getting Started with Yocto
= 6.2 Yocto Networking
= 6.2.1 Yocto Wireless

= 6.3 Yocto Application Development
= 6.3.1 Configure Qt Creator IDE
= 6.3.1.1 Qt Creator Hello World

= 6.3.2 Yocto Hide Cursor

= 6.4 Yocto Startup Scripts
» 6.5 Custom Build Yocto

= 70QNX
= 7.1 QNX BSP
= 7.2 QNX Booting

= 8§ Android
= 8.1 Getting Started with Android
= 8.2 Android Networking
= 8.3 Android Software Development
= 8.4 Android Manually Install APK

= 9 Backup / Restore
= 9.1 MicroSD Card
= 9.2 eMMC

= 10 Compile the Kernel
= 10.1 Change Kernel Splash Screen

= 11 Production Mechanism
=]2 Features

= 2.1 ADC
12.2 Bluetooth
12.3 CAN
12.4 COM Ports
12.5 CPU
12.6 eMMC
12.7 Enclosures
12.8 FPGA

= 12.8.1 FPGA Crossbar

= 12.9 GPIO
= 12.9.1 FPGA GPIO

12.10 Interrupts
12.11 LEDs
12.12 MicroSD Card Interface
12.13 NVRAM
12.14 Onboard SPI Flash
12.15 RTC
12.16 USB
= 12.16.1 USB OTG
= 12.16.2 USB Host

= 12.17 SATA
= 12.18 Silabs Microcontroller
= 12.18.1 Silabs Sleep Mode

= 12.19 SPI

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

275

7.2.2018

TS-7970 - Technologic Systems Manuals

12.20 TWI
12.21 Watchdog
12.22 WIFI

= 13 External Interfaces

| |
—_
~
w2

R

13.1 Audio
13.2 COM2 Header
13.3 Ethernet
13.4 HDMI
= 13.4.1 Rotate the video output

13.5 HD1

13.6 HD2

13.7 HD3

13.8 Mini Card Connector
13.9 Push Button

13.10 RJ45 2W-Modbus
13.11 Terminal Blocks
13.12 USB Device

13.13 USB Hosts

pecifications

14.1 Power Specifications

14.2 Power Consumption

14.3 Temperature Specifications
14.4 1O Specifications

14.5 Rail Specifications

evisions and Changes

15.1 TS-7970 PCB Revisions
15.2 U-Boot Changelog
15.3 FPGA Changelog
15.4 Silabs Changelog
15.5 Software Images
= 15.5.1 Yocto Changelog
15.5.2 Debian Changelog
15.5.3 Arch Linux Changelog
15.5.4 Ubuntu Linux Changelog
15.5.5 Ubuntu Core Linux Changelog

15.6 TS-7970 Errata

= 16 Product Notes

16.1 FCC Advisory
16.2 Limited Warranty

1 Getting Started

A Linux PC is recommended for development, and will be assumed for this documentation. For users in Windows or OSX we

recommend virtualizing a Linux PC. Most of our platforms run Debian and if you have no other distribution preference this is what
we recommend.

= Debian.

Virtualization

= Virtualbox (Windows or OSX hosts) (https://www.virtualbox.org/wiki/Downloads)
= VMware Player (https://www.vmware.com/products/player)

org (https://www.debian.org/)

= Parallels (OSX) (http://www.parallels.com/)

Suggested Linux Distributions

= Debian
= Ubuntu

(https://www.debian.org/distrib/)
(http://www.ubuntu.com/desktop)

It may be possible to develop using a Windows or OSX system, but this is not supported. Development will include accessing drives
formatted for Linux and often Linux based tools.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

3/75

7.2.2018 TS-7970 - Technologic Systems Manuals

1.1 Getting Console and Powering up

Get console input by setting the "CON EN" jumper (located near the HDMI connector) and plug a USB type B cable into P2. Connect
the host side to a workstation for development. Console can be viewed before or after power is applied. Boot messages will only be
printed once the device is powered on.

The cp210x (USB Serial) driver is included in most popular distributions. This will show up as /dev/ttyUSBO. For other operating
systems:

= Silabs USB-to-UART drivers (http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx)

The serial console is provided through this port at 115200 baud, 8n1, with no flow control. Picocom is the recommended linux client
to use which can be run with the following command:

2 e al
Esudo picocom -b 115200 /dev/ttyUSBO i
L e e e e oo e e e e e e e e o oo o e 4

This will output some serial setting information and then "Terminal ready". Any messages after this point will be from the device via
the serial output. The terminal is now ready and power can be applied in order to boot up the device. Power is applied through the
removable terminal block. This accepts 5 VDC, or 8-28 VDC input, only a single power input can be connected at any time.

A power supply should be prepared to provide 15 W for most uses. The devices's power consumption will average around 3 W on an
idle quad core. See the #Specifications section for further details on power requirements.

- - L L L - L] L

1234567 8

P1-A, the top row of headers, are used in the following pin designations. For 5 V in, connect pin 7 to a 5 VDC source, and pin 8 to
ground. For 8-28 V in, connect pin 6 to the voltage source and pin 8 to ground. See the terminal blocks section for more information
on this header.

Once power is applied to either the 5 VDC, or 8-28 VDC the device will output information via the console. The first output is from
U-Boot:

Boot will continue immediately unless SW1 is depressed before power is applied and is held down. This will stop boot in U-Boot
allowing access to the U-Boot console. This will also cause the U-Boot to check for USB production.

Jumpers on the header near HDMI influence where the system boots. The "SD Boot" jumper, when set, will cause U-Boot to boot to
SD, and when unset, U-Boot will boot to eMMC. If SW1 is not depressed, then U-Boot will boot to the selected media immediately.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 4/75

7.2.2018 TS-7970 - Technologic Systems Manuals

LT

"8 |

i

L
-
=

=
-
-

=
=
-3

CANZ
CON-E L
5D Boot

The "*** Warning - bad CRC, using default environment" can be safely ignored. This
Note: indicates that u-boot scripts are not being customized. Typing "env save" will hide
these messages, but this is not needed.

1.2 First Linux Boot

U-Boot is always loaded from the onboard SPI flash. U-Boot has the ability to boot Linux, Android, QNX, or other operating systems
on the SD or eMMC. The eMMC and SD cards shipped with the unit are pre-programmed with our Debian Jessie image. See other
OS sections for information on the various OS options that we provide: Yocto, Ubuntu, Android, QNX.

[] Started Serial Getty on ttymxce.

[OK] Reached target Login Prompts.

[] Started SLiM Simple Login Manager.

[] Created slice user-0.slice.

Starting LSB: RPC portmapper replacement...

Starting User Manager for UID O...

Started User Manager for UID ©.

Started LSB: RPC portmapper replacement.

Reached target RPC Port Mapper.

Starting Authenticate and Authorize Users to Run Privileged Tasks...

—
[elele]
ARARR

[Erp——

Debian GNU/Linux 8 ts-imx6 ttymxce

ts-imx6 login:

By default, the startup output is verbose and includes kernel messages and systemd output. The display, if connected, will boot to a
minimalistic XFCE desktop. This is provided as a demo and is not intended for use in development or a shipping application. See the
Debian automatic startup section for information on booting to a single application.

During development it is recommended to leave on verbose messages for debugging.

Note: The non-error output can be disabled by modifying the kernel cmdline.

Once booted up, the serial port will display a login prompt which asks for a username/password. Under Debian this is "root" with no
password which will allow the initial login. From here see the Debian section to continue on with Debian application development.

1.3 Comparison of Distributions

We currently offer Debian, Ubuntu, Yocto, QNX, and Android OSs for the TS-7970. Each of these have advantages and
disadvantages, the major points are outlined below. We recommend Debian if the user does not need GPU support. Yocto is
recommended for QT Creator, Eclipse support, or significant distribution customization.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 5/75

7.2.2018

Distribution

Debian -

Ubuntu "

Yocto

Android

QNX
Neutrino -
RTOS

2 U-Boot

TS-7970 - Technologic Systems Manuals

Advantages

Long Life cycles
(https://wiki.debian.org/DebianReleases)
Strong focus on reliability

Huge online repository of prebuilt
applications available
(https://www.debian.org/distrib/packages)
Lots of examples and documentation
available

Long Life cycles
(https://wiki.ubuntu.com/Releases)
More focus on up to date packages
Huge online repository of prebuilt
applications available
(http://packages.ubuntu.com/)

Lots of examples and documentation
available

Large focus on up to date packages
Allows rebuilding all packages with
changes

Supports portable toolchain packages that
integrate with QT Creator and Eclipse
Includes all patches needed for graphics
support.

Distribution can be rebuilt to include
specific needs.

Simple well defined API using well
documented tools

Allows existing apps to be run without
huge customization

Real time OS allowing determinitic
response times in an application
Commercial application support available
through QNX

Eclipse support

Disadvantages

Cross compilation requires running the same Debian release
on a host
Not patched for hardware support
= No OpenGL or 2D acceleration from GPU. 2D
applications through the framebuffer are still
supported.

Cross compilation requires running the same Ubuntu release
on a host
Not patched for hardware support
= No OpenGL or 2D acceleration from GPU. 2D
applications through the framebuffer are still
supported.

Short life cycles
(https://wiki.yoctoproject.org/wiki/Releases)

Does not support any online repository of prebuilt
applications. Adding packages requires rebuilding Yocto or
building the required package.

Less examples and documentation available online

Under Android it is difficult to access hardware that is not
found on an Android tablet/phone. This includes interfaces
such as UARTSs, GPIO, or ADC
= A common method is to write a C application which
communicates over a localhost socket to an Andoird
application in order to interface with hardware

Slow boot time
Poor documentation for OS customization

License fee required through QNX
Not as much driver support as Linux

The TS-7970 includes U-Boot as the bootloader to launch the full operating system. When the i.MX6 processor starts it loads U-Boot
from the onboard 8MB SPI flash. This allows you to include your boot image on either the SD, eMMC, SATA, NFS, or USB. The U-
Boot bootloader is capable of booting Linux, Android, or other operating systems.

On a normal boot you should see output resembling this:

EU—Boot 2014.10-gee73348 (Oct 07 2015 - 11:12:20)

T2C:

ready
DRAM: 1 GiB
iMMC :
iIn: serial
Out: serial
iErr: serial

iNet: using phy at 7
IFEC [PRIME]

i FSL_SDHC: @, FSL_SDHC: 1
ISF: Detected N25Q64 with page size 256 Bytes, erase size 4 KiB, total 8 MiB

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

7.2.2018 TS-7970 - Technologic Systems Manuals
By default the device will boot to SD or eMMC depending on the status of "SD Boot" on startup.

To break into the U-Boot console, press and hold the SW1 button while the unit is being powered up. This mode will also check for a

USB mass storage device to use for production purposes.

2.1 U-Boot Environment

The eMMC flash contains both the U-Boot executable binary and U-Boot environment. Our default build has 2MiB of environment

space which can be used for variables and boot scripts. The following commands are examples of how to manipulate the U-Boot

environment:

E# Print all environment variables
lenv print -a

E# Sets the variable bootdelay to 5 seconds

ienv set bootdelay 5;

E# Variables can also contain commands

Eenv set hellocmd 'led red on; echo Hello world; led green on;'

1
W Execute commands saved in a variable
i

lenv run hellocmd;

1

E# Commit env changes to the spi flash
Otherwise changes are Lost

lenv save

E# Restore env to default

5env default -a

Remove a variable

ienv delete emmcboot

The most important command is
thelp

W This can also be used to see more information on a specific command

ihelp i2c

f# This is a command added to u-boot by TS to read the baseboard id

ibbdetect

5echo ${baseboard} ${baseboardid}
% The echos willreturn:

i# TS-8390 2

5# Boots 1into the binary at $loadaddr. This file needs to have

5# the uboot header from mkimage. A ulmage already contains this.

bootm

W Boots into the binary at $loadaddr, skips the initrd, specifies

f# the fdtaddr so Linux knows where to find the board support
bootm ${loadaddr} - ${fdtaddr}

f# Get a DHCP address
idhcp
This sets ${ipaddr}, ${dnsip}, ${gatewayip}, ${netmask}

w# and ${ip_dyn} which can be used to check if the dhcp was successful

5# These commands are used for scripting:
ifalse # do nothing, unsuccessfully
true # do nothing, successfully

5# This command lets you set fuses in the processor

W Setting fuses can brick your board, will void your warranty,
W and should not be done in most cases

ifuse

5# GPIO can be manipulated from u-boot. Keep in mind that the IOMUX
W in u-boot 1is only setup enough to boot the board, so not all pins will
i# be set to GPIO mode out of the box. Boot to the full operating system

for more GPIO support.

W# GPIO are specified in bank, IO in the imx6 manual. U-boot uses a flat numberspace,

so for CN2_83/EIM OF this is bank 2 dio 25, or (32%2)+25=89
W Set CNI1_83 Llow

igpio clear 83

i# Set CN1_83 high

igpio set 83

i# Read CN1_83

igpio input 83

i# Control LEDs
iled red on
iled green on
led all off
iled red toggle

This command is used to copy a file from most devices
5# Load kernel from SD

‘load mmc 0:1 ${loadaddr} /boot/uImage

Load Kernel from eMMC

1load mmc 1:1 ${loadaddr} /boot/uImage

5# Load kernel from USB

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

775

7.2.2018 TS-7970 - Technologic Systems Manuals

iusb start

load usb 0:1 ${loadaddr} /boot/uImage
Load kernel from SATA

Esata init

Eload sata 0:1 ${loadaddr} /boot/uImage

E# You can view the fdt from u-boot with fdt
iload mmc ©:1 ${fdtaddr} /boot/imx6q-ts4900.dtb
ifdt addr ${fdtaddr}

Wfdt print

E# You can blindly jump into any memory

W This is similar to bootm, but it does not use the
E# u-boot header

iload mmc @:1 ${loadaddr} /boot/custombinary

igo ${loadaddr}

|
E# Browse fat,ext2,ext3,or ext4 filesystems:
1ls mmc 0:1 /

1

E# Access memory Like devmem in Linux, you can read/write arbitrary memory
W% using mw and md

W write

Emw 0x10000000 Oxcoffeedd 1

read

imd ©x10000000 1

E# Test memory.
mtest

1
E# Check for new SD card
‘mmc rescan

W Read SD card size
Emmc dev 0

immcinfo

i# Read eMMC Size

‘mmc dev 1

mmcinfo

1

W The NFS command is Like 'load', but used over the network
idhcp

ienv set serverip 192.168.0.11

Enfs ${loadaddr} 192.168.0.11:/path/to/somefile

W Test ICMP
idhcp
iping 192.168.0.11

E# Reboot

Ereset

E# SPI access is through the SF command

E# Be careful with sf commands since

% this is where u-boot and the FPGA bitstream exist
Improper use can render the board unbootable

isf probe

i# Delay in seconds
'sleep 10

E# You can load HUSH scripts that have been created with mkimage
\load mmc 0:1 ${loadaddr} /boot/ubootscript
isource ${loadaddr}

W# Most commands have return values that can be used to test
E# success, and HUSH scripting supports comparisons Like

W test in Bash, but much more minimal

iif load mmc 1:1 ${fdtaddr} /boot/uImage;

! then echo Loaded Kernel

ielse

: echo Could not find kernel

i

E# Commands can be timed with "time"
Etime sf probe

1
W Print U-boot version/build information
iversion

1

2.3 Modify Linux Kernel cmdline

The Linux kernel cmdline can be customized by modifying the cmdline_append variable. If new arguments are added, the existing
value should also be included with the new arguments.

‘env set cmdline_append console=ttymxc@,115200 init=/sbin/init quiet
ienv save

Lo

The kernel command line can also be modified from from the onboard Linux. From the linux shell prompt run the following
commands to install the necessary tools and create the script:

Eapt-get update && apt-get install u-boot-tools -y
iecho "env set cmdline_append console=ttymxc®@,115200 init=/sbin/init quiet" > /boot/boot.scr H
5mkimage -A arm -T script -C none -n 'tsimx6 boot script' -d /boot/boot.scr /boot/boot.ub i

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 8/75

7.2.2018 TS-7970 - Technologic Systems Manuals

The boot.scr includes the plain text commands to be run in U-Boot on startup. The mkimage tool adds a checksum and header to this
file which can be loaded by U-Boot. The .ub file should not be edited directly.

2.4 U-boot Recovery

U-Boot itself handles CPU and RAM setup/configuration that needs to be run every boot. Therefore separate binaries are maintained
for each CPU grade, RAM part, and RAM size; and the proper binary must be used for the device configuration. On a functional unit,
run 'env print imx_type' in U-Boot and it will return the correct device variant.

On startup, the TS-7970 checks the SPI flash for a valid boot header in SPI flash. If it is unable to locate a valid boot header, the CPU
falls back to the "serial downloader" which allows the CPU to execute code sent via USB. If the board has a valid boot header, but a
damaged or invalid U-Boot binary located in SPI; an RMA return or a TS-9468 development board will be required in order to
properly recover the unit. Please contact us (https://www.embeddedarm.com/support/contact-us.php) for assistance with this.

1) Download u-boot for the correct imx_type variant from the list here: ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7970-linux/u-boot/.
See the U-Boot Changelog for information on the changes between released versions.

2) Download and build/install the "imx_usb" loader: https://community.freescale.com/docs/DOC-94117
3) Disconnect power from the device.

4) Remove the "CON EN" jumper.

5) Apply power to the device.

6) Plug a USB type B cable into the P2 connector on the device and connect it to a host PC.

7) Check 'dmesg' or 'Isusb' on the host PC for a new USB connection. This should show a HID device listing NXP or Freescale as the
manufacturer. For example:

If it does not show the above output, an RMA return or TS-9468 development board will be required in order to properly recover the
unit. Please contact us (https://www.embeddedarm.com/support/contact-us.php) for assistance with this.

8) Hold down SW1.

9) Run 'imx_usb path/to/u-boot.imx' on the host PC while still holding down SW1. Continue holding SW1 for a few seconds after the
command is run.

10) Disconnect the USB cable on P2.
11) Set the "CON EN" jumper.
12) Re-insert the USB cable into P2.

At this point, the USB serial device should show up on the host, opening it will reveal that the unit is stopped at the U-Boot prompt.
Follow the steps in Update U-Boot to reinstall U-Boot on the SPI flash.

2.5 Linux NFS Boot

U-Boot's NFS support can be used to load a kernel, device tree binary, and root filesystem over the network. The default scripts
include an example NFS boot script.

i# Set this to your NFS root path. The server root should be accessible at this path.
ienv set nfsroot 192.168.0.36:/mnt/storage/imx6/
lenv save

i# Boot to NFS once
irun nfsboot;

i# To make the NFS boot the persistent default

ienv set bootcmd run nfsboot;
lenv save
H

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 9/75

7.2.2018 TS-7970 - Technologic Systems Manuals

2.6 Update U-Boot

U-Boot requires a different build for Quad/Dual and Solo/Duallite. When booted to the U-Boot shell, run 'env print imx_type' and it
will return the correct U-Boot build that should be used. Copy the built u-boot.imx file or the pre-built binary from our FTP site
(ftp:/ftp.embeddedarm.com/ts-arm-sbc/ts-7970-linux/u-boot/) to the SD card as "/u-boot.imx", and run the following U-Boot
commands:

immc dev @

iload mmc ©:1 ${loadaddr} /u-boot.imx
isf probe

isf erase © 0x80000

isf write ${loadaddr} @x4ee $filesize

2.7 U-boot Development

While we do provide our u-boot sources, we typically do not recommend rebuilding a custom uboot if it can be avoided. This CPU
has a long lifetime which will outlast most RAM chips. If we have to update the RAM timing later in the boards life due to an EOL,
die change, or any other change that may require new RAM configuration/timing changes, we will update this in our shipping u-boot.
If this happens in the future our shipping u-boot will include these fixes and not require user intervention. If you are using a custom u-
boot you may need to pull down our new changes and rebuild to get the updated configuration.

Our u-boot includes a variable "imx_type". With a custom u-boot, make sure to check the value of this before writing. If we are forced
to update the RAM configuration we will change this variable. We will also send out a product change to anyone who is subscribed to
our PCS system (http://pcs.embeddedarm.com/) .

If you still want to proceed with building a custom u-boot, use the imx v2015.04 3.14.52 1.1.0_ga branch from the github here:
https://github.com/embeddedarm/u-boot-imx

Boot up a TS-7970 into u-boot and run "echo ${imx_type}". This will show you the u-boot config to use for the correct RAM timing.
We use the same GCC 6.2 used from Yocto Morty to compile the u-boot binary.

iexport ARCH=arm
iexport CROSS_COMPILE=/opt/poky/2.2.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-

igit clone https://github.com/embeddedarm/u-boot-imx.git -b imx_v2015.04_3.14.52_1.1.0_ga
icd u-boot-imx

i# For example, one of the quad core variants. Replace this with your imx_type

imake ts7970-s-1g-800mhz-i_defconfig

make -j4

This will output a u-boot.imx that can be written to the board using the steps in #Update u-boot.

2.8 Access U-boot Environment from Linux

U-Boot includes a utility fw_printenv which set set/read environment variables from Linux. This must be built and provided with a
config file before it will work.

On the board first boot to u-boot by holding SW1 pressed on startup. At the prompt run:

iU—Boot > env print imx_type
iimx_type=ts7976@-s-1g-80@mhz-i

icd /usr/src/
igit clone --depth 1 https://github.com/embeddedarm/u-boot-imx.git -b imx_v2015.04_3.14.52_1.1.0_ga
icd u-boot-imx

Since u-boot gave us "imx_type=ts7970-s-1g-800mhz-i", the example defconfig is ts4900-s-1g-800mhz-i_defconfig. Your board's
defconfig may be different and this build should match.

imake ts7970-s-1g-800mhz-i_defconfig
imake -j4 env

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 10/75

7.2.2018 TS-7970 - Technologic Systems Manuals

icp tools/env/fw_printenv /usr/bin/

i# The same utility sets environment variables when
W called as fw_setenv

iln -s /usr/bin/fw_printenv /usr/bin/fw_setenv

2 al
SPI flash on the TS-7970/TS-7990
% MTD device name Device offset Env. size Flash sector size Number of sectors

i/dev/mtdblocke 0x100000 0x2000 0x1000 2 i
i/dev/mtdblocke 0x180000 0x2000 0x1000 2 ;
becccccccccccc e e c s e e e c e e e e e e e c e c e c e c e E S S S e e e SRS S S EEEEE S E e S E e E S S S e eSS S S e e e E S S S S e C e E S e e e eSS S e e e e eSS e e e e e eSS E eSS S e e e eSS e e e e e e e .- 4

Then the environment is blank, and u-boot is loading the environment compiled into the u-boot binary. This is normal and is how
boards are shipped.

You can modify variables with this command as well:

i# Set cmdline_append to include "quiet"
ifw_setenv cmdline_append console=ttymxc®,115200 ro init=/sbin/init quiet

3 Debian

Debian is a community run Linux distribution. Debian provides tens of thousands of precompiled applications and services. This
distribution is known for stability and large community providing support and documentation. This distribution does not include the
same support as Yocto for the GPU. OpenGL ES, Gstreamer, or OpenCL are not supported in Debian. The framebuffer is supported
so 2D applications will still run well. Debian is also very well suited for headless applications.

3.1 Getting Started with Debian

Once installed the default user is "root" with no password.

= debian-armhf-jessie-latest.tar.bz2 (ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-latest.tar.bz2) (md5 (ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-
4900-linux/distributions/debian/debian-armhf-jessie-latest.tar.bz2.md5))

Note: This is a shared image that supports the TS-4900, TS-7970, and TS-TPC-7990.

To prepare an SD card, use partitioning tools such as 'fdisk' 'cfdisk' or 'gparted' in linux to create a single linux partition on the SD
card. See the guide here for more information. Once it is formatted, extract the above tarball with:

i# Assuming your SD card 1is /dev/sdc with one partition :
imkfs.ext3 /dev/sdcl i
imkdir /mnt/sd/ :
isudo mount /dev/sdcl /mnt/sd/ i
isudo tar --numeric-owner -xjf debian-armhf-jessie-latest.tar.bz2 -C /mnt/sd i
'sudo umount /mnt/sd !
isync :

The ext4 filesystem can be used instead of ext3, but it may require additional options.
U-Boot does not support the 64bit addressing added as the default behavior in recent
Note: revisions of mkfs.ext4. If using e2fsprogs 1.43 or newer, the options "-O
~64bit,"metadata_csum" must be used with ext4 for proper compatibility. Older
versions of e2fsprogs do not need these options passed nor are they needed for ext3.

To rewrite the eMMC the unit must be booted to SD or any other media that is not eMMC. Once booted, run the following
commands.:

imkfs.ext3 /dev/mmcblk2pl i
imkdir /mnt/emmc i
imount /dev/mmcblk2pl /mnt/emmc :
wget -qO- ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-linux/distributions/debian/debian-armhf-jessie-latest.tar.bz2 | tar xj -C /n
iumount /mnt/emmc :
isync '

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 11/75

7.2.2018 TS-7970 - Technologic Systems Manuals

The same commands can be used to write a SATA drive by substituting /dev/mmcblk2p1 with /dev/sdal.

3.2 Debian Networking
From almost any Linux system you can use 'ip' command or the 'ifconfig' and 'route' commands to initially set up the network.

i# Bring up the CPU network interface
iifconfig ethe up

i# Or if you're on a baseboard with a second ethernet port, you can use that as:
iifconfig ethl up

i# Set an 1ip address (assumes 255.255.255.0 subnet mask)
rifconfig ethe 192.168.0.50

Set a specific subnet

iifconfig eth® 192.168.0.50 netmask 255.255.0.0

i# Configure your route. This is the server that provides your internet connection.
iroute add default gw 192.168.0.1

1
i# Edit /etc/resolv.conf for your DNS server
lecho "nameserver 192.168.6.1" > /etc/resolv.conf
1

Most networks will offer a DHCP server, an IP address can be obtained from a server with a single command in linux:

Configure DHCP in Debian:

i# To setup the default CPU ethernet port

‘dhclient ethe

i# Or if you're on a baseboard with a second ethernet port, you can use that as:
'dhclient ethl

W# You can configure all ethernet ports for a dhcp response with

idhclient

Systemd provides a networking configuration option to allow for automatic configuration on startup. Systemd-networkd has a number
of different configuration files, some of the default examples and setup steps are outlined below.

/etc/systemd/network/eth.network

i[Match]
Name=eth*

‘[Network]
IDHCP=yes

isystemctl start systemd-resolved.service
isystemctl enable systemd-resolved.service
iln -s /run/systemd/resolve/resolv.conf /etc/resolv.conf

For a static config create a network configuration for that specific interface.

/etc/systemd/network/eth0.network

i[Match]
iName:ethe

\[Network]
iAddress=192.168.0.50/24
\Gateway=192.168.0.1
iDNS=192.168.0.1

For more information on networking, see Debian and systemd's documentation:

= Systemd Networking Documentation (http://www.freedesktop.org/software/systemd/man/systemd.network.html)
= Debian Documentation (http://wiki.debian.org/Network)

3.2.1 Debian WIFI Client

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 12/75

7.2.2018 TS-7970 - Technologic Systems Manuals

If connecting to a WPA/WPA2 network, a wpa_supplicant config file must first be created:

i[Unit]

Description=WPA supplicant daemon (interface-specific version)
iRequires:sys-subsystem-net-devices—%i.device
After=sys-subsystem-net-devices-%i.device

i[Service]
\Type=simple
iExecStart:/sbin/wpa_supplicant -c/etc/wpa_supplicant/wpa_supplicant-%I.conf -i%I

E[Install]
iAlias:multi—user.target.wants/wpa_supplicant@%i.service

E[Match]
Name=wlan®@

E[Network]
IDHCP=yes

See the systemctl-networkd example for setting a static IP for a network interface. The wlan0.network can be configured the same

way as an eth.network.

To enable all of the changes that have been made, run the following commands:

isystemctl enable wpa_supplicant@wlane
isystemctl start wpa_supplicant@wlane
isystemctl restart systemd-networkd

3.2.2 Debian WIFI Access Point

First, hostapd needs to be installed in order to manage the access point on the device:

Note: The install process will start an unconfigured hostapd process. This process must be
* killed and restarted before a new hostapd.conf will take effect.

Edit /etc/hostapd/hostapd.conf to include the following lines:

iinterFace:wlan@
idriver=nl180211
'ssid=YourAPName
ichannel=1

Refer to the kernel's hostapd documentation
Note: (http://wireless.kernel.org/en/users/Documentation/hostapd) for more wireless
configuration options.

To start the access point launch hostapd:

This will start up an access point that can be detected by WIFI clients. A DHCP server will likely be desired to assign IP addresses.

Refer to Debian's documentation for more details on DHCP configuration (https://wiki.debian.org/DHCP_Server) .

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

13/75

7.2.2018 TS-7970 - Technologic Systems Manuals

3.3 Debian Application Development

3.3.1 Debian Jessie Cross Compiling

Debian Jessie provides cross compilers from its distribution. An install on a workstation can build for the same release on other
architectures. A PC, virtual machine, or chroot will need to be used for this. Install Debian Jessie for your workstation here
(https://www.debian.org/releases/jessie/) .

From a Debian workstation (not the target), run these commands to set up the cross compiler:

E# Run "lsb_release -a" and verify Debian 8.X 1is returned. These instructions are not

E# expected to work on any other version or distribution.

Eapt—get install curl build-essential

fsu root

iecho "deb http://emdebian.org/tools/debian jessie main" > /etc/apt/sources.list.d/emdebian.list

5curl http://emdebian.org/tools/debian/emdebian-toolchain-archive.key | apt-key add -

W# Note that while Ubuntu uses apt as well, Ubuntu host setup is slightly different, instead of the above commands use the following:

E# echo "deb [arch=armhf] http://ports.ubuntu.com/ubuntu-ports trusty main restricted universe multiverse" >> /etc/apt/sources.list

% echo "deb [arch=armhf] http://ports.ubuntu.com/ubuntu-ports trusty-updates main restricted universe multiverse" >> /etc/apt/sources.list
echo "deb [arch=armhf] http://ports.ubuntu.com/ubuntu-ports trusty-security main restricted universe multiverse" >> /etc/apt/sources.list
Edpkg --add-architecture armhf

\apt-get update

iapt-get install crossbuild-essential-armhf

This will install a toolchain that can be used with the prefix "arm-linux-gnueabihf-". The standard GCC tools will start with that
name, eg "arm-linux-gnueabihf-gcc".

The toolchain can now compile a simple hello world application. Create hello-world.c on the Debian workstation:

E#include <stdio.h>
tint main(){
E printf("Hello World\n");

Earm—linux—gnueabihf—gcc hello-world.c -o hello-world
ifile hello-world

This will return that the binary created is for ARM. Copy this to the target platform to run it there.

Debian Jessie supports multiarch which can install packages designed for other architectures. On workstations this is how 32-bit and

64-bit support is provided. This can also be used to install armhf packages on an x86 based workstation.

This cross compile environment can link to a shared library from the Debian root. The package would be installed in Debian on the
workstation to provide headers and .so. This is included in most "-dev" packages. When run on the arm target it will also need a copy

of the library installed, but it does not need the -dev package.

Eapt-get install libcurl4-openssl-dev:armhf

i# Download the simple.c example from curl:

wget https://raw.githubusercontent.com/bagder/curl/master/docs/examples/simple.c

After installing the supporting Llibrary, curl will link as compiling on the unit.
Earm-linux-gnueabihf-gcc simple.c -o simple -lcurl

Copy the binary to the target platform and run on the target. This can be accomplished with network protocols like NFS, SCP, FTP,

etc.

If any created binaries do not rely on hardware support like GPIO or CAN, they can be run using gemu.

E# using the hello world example from before:
i./hello-world

E# Returns Exec format error

lapt-get install gemu-user-static
i./hello-world

3.4 Debian Installing New Software

Debian provides the apt-get system which allows management of pre-built applications. First apt will need a network connection to

the internet. The update command will download a list of prebuilt packages and the current version.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

14/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Debian provides the apt-get system which lets you manage pre-built applications. Before you do this you need to update Debian's list
of package versions and locations. This assumes you have a valid network connection to the internet.

)
°
-+
'
)
]
-+
<
°
Q
]
+
o

iroot@ts:~# apt-cache search openjdk

ijvm—7-avian—jre - lightweight virtual machine using the Open]DK class library
ifreemind - Java Program for creating and viewing Mindmaps

iicedtea—7—plugin - web browser plugin based on OpenJDK and IcedTea to execute Java applets
idefault—jdk - Standard Java or Java compatible Development Kit

idefault-jdk-doc - Standard Java or Java compatible Development Kit (documentation)
idefault—jre - Standard Java or Java compatible Runtime

idefault-jre-headless - Standard Java or Java compatible Runtime (headless)
ijtreg - Regression Test Harness for the Open]DK platform

ilibreoffice - office productivity suite (metapackage)

\icedtea-7-jre-jamvm - Alternative JVM for OpenlDK, using JamvM

iopenjdk—7—dbg - Java runtime based on Openl]DK (debugging symbols)
iopenjdk-7-demo - Java runtime based on Open]DK (demos and examples)
iopenjdk—7—doc - OpenJDK Development Kit (JDK) documentation

iopenjdk—7-jdk - OpenJDK Development Kit (JDK)

iopenjdk-7-jre - Openl]DK Java runtime, using Hotspot Zero

iopenjdk—7—jre—headless - Open]DK Java runtime, using Hotspot Zero (headless)
iopenjdk—7—jre—lib - OpenJDK Java runtime (architecture independent libraries)
lopenjdk-7-source - Open]DK Development Kit (JDK) source files
iuwsgi—app—integration—plugins - plugins for integration of uWSGI and application
wuwsgi-plugin-jvm-openjdk-7 - Java plugin for uWSGI (OpenlDK 7)
iuwsgi-plugin-jwsgi-openjdk-7 - JWSGI plugin for uWSGI (OpenJDK 7)

In this case you will want the openjdk-7-jre package. Names of packages are on Debian's wiki (http://wiki.debian.org/) or the
packages site (https://packages.debian.org/jessie/) .

With the package name apt-get install can be used to install the prebuilt packages.

iapt-get install openjdk-7-jre
W# More than one package can be installed at a time.
iapt—get install openjdk-7-jre nano vim mplayer

For more information on using apt-get refer to Debian's documentation here (http://wiki.debian.org/AptCLI) .

3.5 Debian Setting up SSH

To install ssh, install the package as normal with apt-get:

[9)
o
~+
[
o
m
~+
-
>
7]
~+
iy
-
-
o
b
(0]
>
0
)
>
|
[
m
3
<
™
el

Make sure the device is configured on the network and set a password for the remote user. SSH will not allow remote connections
without a password or a valid SSH key pair.

©
]
0
)
=
[=%
>
o
o
~

After this setup it is now possible to connect from a remote PC supporting SSH. On Linux/OS X this is the "ssh" command, or from
Windows using a client such as putty (http://www.chiark.greenend.org.uk/~sgtatham/putty/) .

Note: If a DNS server is not present on the target network, it is possible to save time at login
* by adding "UseDNS no" in /etc/ssh/sshd_config.

3.6 Debian Starting Automatically
A systemd service can be created to start up headless applications. Create a file in /etc/systemd/system/yourapp.service

i[Unit]
Description=Run an application on startup

E[Service]
iType=simple
EExecStart:/usr/local/bin/your_app_or_script

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 15/75

7.2.2018 TS-7970 - Technologic Systems Manuals

i[Install]
EWantedBy=mu1ti—user.target

i# Start the app on startup, but will not start it now
isystemctl enable yourapp.service

i# Start the app now, but doesn't change auto startup
isystemctl start yourapp.service

See the systemd documentation
Note: (http://www.freedesktop.org/software/systemd/man/systemd.service.html) for in depth
documentation on services.

To start an application on bootup with X11 instead change the x-session-manager. By default the system starts xfce:

iroot@ts:~# 1s -lah /usr/bin/x-session-manager

Irwxrwxrwx 1 root root 35 May 26 2015 /usr/bin/x-session-manager -> /etc/alternatives/x-session-manager
iroot@ts:~# 1s -lah /etc/alternatives/x-session-manager

ilrwxrwxrwx 1 root root 19 May 26 2015 /etc/alternatives/x-session-manager -> /usr/bin/startxfce4

i#!/bin/bash
'matchbox-window-manager -use_titlebar no &

iexec xfce4-terminal

You may need to "apt-get install matchbox-window-manager." first. This is a tiny window manager which also has a few flags that
simplify embedded use. Now enable this session manager and restart slim to restart x11 and show it now.

i
ichmod a+x /usr/bin/mini-x-session

'rm /etc/alternatives/x-session-manager

iln -s /usr/bin/mini-x-session /etc/alternatives/x-session-manager
iservice slim restart

H

If the x-session-manager process ever closes x11 will restart. The exec command allows a new process to take over the existing PID.
In the above example xfce4-terminal takes over the PID of x-session-manager. If the terminal is closed with commands like exit the
slim/x11 processes will restart.

4 Ubuntu

Ubuntu is a distribution provided by Canonical which is based on Debian. Ubuntu often has more recent packages but follows a
shorter release cycle. The image we provide is based on Ubuntu. We use the root filesystem, but the kernel is not provided by Ubuntu
or in any way associated with Canonical. Our Kernel is based on the imx _4.1.15_1.0.0_ga release from git.freescale.com. This is
patched to provide support for our boards and peripherals.

= Ubuntu Releases (https://wiki.ubuntu.com/Releases)
= Freescale git (http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/)
= Technologic 4.1 imx git (https://github.com/embeddedarm/linux-3.10.17-imx6/tree/imx_4.1.15 1.0.0_ga)

This image includes support for the TS-4900, TS-7970, and TS-TPC-7990.

4.1 Getting Started with Ubuntu

The latest release is available here:

= ubuntu-armhf-16.04-latest.tar.bz2 (ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/ubuntu/ubuntu-armhf-16.04-latest.tar.bz2)

The login is either "root" with no password, or username "ubuntu" with the password "ubuntu". The ubuntu user is allowed to run
sudo.

To write this to an SD card, first partition the SD card to have one large ext3, or ext4 partition. See the guide here for more
information. Once it is formatted, extract this tar with:

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 16/75

7.2.2018 TS-7970 - Technologic Systems Manuals

i# Assuming your SD card is /dev/sdc with one partition

imkfs.ext3 /dev/sdcl

mkdir /mnt/sd/

isudo mount /dev/sdcl /mnt/sd/

Esudo tar --numeric-owner -xjf ubuntu-armhf-16.04-latest.tar.bz2 -C /mnt/sd
isudo umount /mnt/sd

isync

To rewrite the eMMC, boot to the SD card. You cannot rewrite the emmc while it is mounted elsewhere, or used to currently boot the

system. Once booted to the SD, run:

Emkfs.extB /dev/mmcblk2pl
imkdir /mnt/emmc
imount /dev/mmcblk2pl /mnt/emmc

wget -qO- ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-1linux/distributions/ubuntu/ubuntu-armhf-16.04-latest.tar.bz2 | tar ——numerid

iumount /mnt/emmc
isync

The ext4 filesystem can be used instead of ext3, but it may require additional options.
U-Boot does not support the 64bit addressing added as the default behavior in recent
Note: revisions of mkfs.ext4. If using e2fsprogs 1.43 or newer, the options "-O
~64bit,"metadata_csum" must be used with ext4 for proper compatibility. Older
versions of e2fsprogs do not need these options passed nor are they needed for ext3.

4.2 Ubuntu Networking

From almost any Linux system you can use "ip" or the ifconfig/route commands to set up the network.

E# Bring up the CPU network interface
iifconfig ethe up

5# Or if you're on a baseboard with a second ethernet port, you can use that as:
iifconfig ethl up

Set an ip address (assumes 255.255.255.0 subnet mask)
iifconfig ethe 192.168.0.50

i# Set a specific subnet
tifconfig eth® 192.168.0.50 netmask 255.255.0.0

i# Configure your route. This is the server that provides your internet connection.
iroute add default gw 192.168.0.1

E# Edit /etc/resolv.conf for your DNS server
iecho "nameserver 192.168.0.1" > /etc/resolv.conf

E# To setup the default CPU ethernet port

idhclient ethe

W Or if you're on a baseboard with a second ethernet port, you can use that as:
idhclient ethi

You can configure all ethernet ports for a dhcp response with

idhclient

To make DHCP run on startup systemd's networking will need to be configured.

In /etc/systemd/network/eth.network

E[Match]
Name=eth*

E[Network]
IDHCP=yes

Esystemctl start systemd-resolved.service
isystemctl enable systemd-resolved.service
Eln -s /run/systemd/resolve/resolv.conf /etc/resolv.conf

For a static configuration create a config file for that specific interface. /etc/systemd/network/eth0.network

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

17/75

7.2.2018 TS-7970 - Technologic Systems Manuals

i[Match]
iName:ethe

i[Network]
iAddress=192.168.0.506/24
\Gateway=192.168.0.1
IDNS=192.168.0.1

For more information on networking, see Ubuntu and systemd's documentation:

= Systemd Networking Documentation (http://www.freedesktop.org/software/systemd/man/systemd.network.html)
= Ubuntu Documentation (https://help.ubuntu.com/Its/serverguide/network-configuration.html)

4.2.1 Ubuntu WIFI Client

If connecting to a WPA/WPA2 network, a wpa_supplicant config file must first be created:

i[Unit]

Description=WPA supplicant daemon (interface-specific version)
iRequires=sys-subsystem-net-devices-%i.device
After=sys-subsystem-net-devices-%i.device

i[Service]
‘Type=simple
iExecStaPt:/sbin/wpa_supplicant -c/etc/wpa_supplicant/wpa_supplicant-%I.conf -i%I

E[Install]
iAlias:multi—user.target.wants/wpa_supplicant@%i.service

E[Match]
iName=wlan@

E[Network]
iDHCP=yes

See the systemctl-networkd example for setting a static IP for a network interface. The wlanO.network can be configured the same

way as an eth.network. To enable all of the changes that have been made, run the following commands:

isystemctl enable wpa_supplicant@wlane
isystemctl start wpa_supplicant@wlane
Esystemctl restart systemd-networkd

4.2.2 Ubuntu WIFI Access Point

First, hostapd needs to be installed in order to manage the access point on the device:

Note: The install process will start an unconfigured hostapd process. This process must be
0% Lilled and restarted before a new hostapd.conf will take effect.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

18/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Edit /etc/hostapd/hostapd.conf to include the following lines:

iinterFace:wlane
idriver=n180211
'ssid=YourAPName
ichannel=1

Refer to the kernel's hostapd documentation
Note: (http://wireless.kernel.org/en/users/Documentation/hostapd) for more wireless
configuration options.

To start the access point launch hostapd:

2 al
thostapd /etc/hostapd/hostapd.conf &
L e e o o e o e o e e o e mmee H

This will start up an access point that can be detected by WIFI clients. A DHCP server will likely be desired to assign IP addresses.
Refer to Debian's documentation for more details on DHCP configuration (https://wiki.debian.org/DHCP_Server) .

4.3 Ubuntu Installing New Software

Ubuntu provides the apt-get system which lets you manage pre-built applications. Before you do this you need to update Ubuntu's list
of package versions and locations. This assumes you have a valid network connection to the internet.

e
°
~+
'
[11]
]
+
<
°
Q
]
+
)

For example, lets say you wanted to install openjdk for Java support. You can use the apt-cache command to search the local cache of
Debian's packages.

iroot@ts—imx6:~# apt-cache search openjdk

ijvm—7—avian—jre - lightweight virtual machine using the Open]DK class library
ifreemind - Java Program for creating and viewing Mindmaps

iicedtea—7-plugin - web browser plugin based on OpenJDK and IcedTea to execute Java applets
idefault-jdk - Standard Java or Java compatible Development Kit

\default-jdk-doc - Standard Java or Java compatible Development Kit (documentation)
idefault—jre - Standard Java or Java compatible Runtime

idefault-jre-headless - Standard Java or Java compatible Runtime (headless)
ijtreg - Regression Test Harness for the Open]DK platform

ilibreoffice - office productivity suite (metapackage)

\icedtea-7-jre-jamvm - Alternative JVM for Open]DK, using JamVM

iopenjdk—7—dbg - Java runtime based on OpenJDK (debugging symbols)
iopenjdk—7—demo - Java runtime based on Open]DK (demos and examples)
lopenjdk-7-doc - Open]DK Development Kit (JIDK) documentation

iopenjdk-7-jdk - OpenJDK Development Kit (JDK)

openjdk-7-jre - Open]DK Java runtime, using Hotspot Zero

iopenjdk-7-jre-headless - Openl]DK Java runtime, using Hotspot Zero (headless)
iopenjdk-7—jre—lib - OpenJDK Java runtime (architecture independent libraries)
lopenjdk-7-source - Openl]DK Development Kit (JDK) source files
iuwsgi—app—integration—plugins - plugins for integration of uWSGI and application
wuwsgi-plugin-jvm-openjdk-7 - Java plugin for uWwSGI (OpenlDK 7)
iuwsgi—plugin—jwsgi—openjdk—7 - JWSGI plugin for uWSGI (OpenJDK 7)

In this case you will likely want openjdk-7-jre to provide a runtime environment, and possibly openjdk-7-jdk to provide a
development environment.

Once you have the package name you can use apt-get to install the package and any dependencies. This assumes you have a network
connection to the internet.

iapt—get install openjdk-7-jre
W You can also chain packages to be installed
Eapt-get install openjdk-7-jre nano vim mplayer

For more information on using apt-get refer to Ubuntu's documentation here (https://help.ubuntu.com/community/AptGet/Howto) .
4.4 Ubuntu Setting up SSH

To install ssh, install the package as normal with apt-get:

apt-get install openssh-server i

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 19/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Make sure your board is configured properly on the network, and set a password for your remote user. SSH will not allow remote
connections without a password or a shared key.

You should now be able to connect from a remote Linux or OSX system using "ssh" or from Windows using a client such as putty
(http://www.chiark.greenend.org.uk/~sgtatham/putty/) .

4.5 Ubuntu Starting Automatically
A systemd service can be created to start up headless applications. Create a file in /etc/systemd/system/yourapp.service

i[Unit]
Description=Run an application on startup
E[Service]

\Type=simple
iExecStaPt=/usr/local/bin/your_app_or_script

i[Install]
iwantedBy=multi—useP.target

i# Start the app on startup, but will not start it now
isystemctl enable yourapp.service

i# Start the app now, but doesn't change auto startup
isystemctl start yourapp.service

See the systemd documentation
Note: (http://www.freedesktop.org/software/systemd/man/systemd.service.html) for in depth
documentation on services.

To start an application on bootup with X11 instead change the x-session-manager. By default the system starts xfce:

iroot@ts:~# 1s -lah /usr/bin/x-session-manager

Irwxrwxrwx 1 root root 35 May 26 2015 /usr/bin/x-session-manager -> /etc/alternatives/x-session-manager
iroot@ts:~# 1s -lah /etc/alternatives/x-session-manager

ilrwxrwxrwx 1 root root 19 May 26 2015 /etc/alternatives/x-session-manager -> /usr/bin/startxfce4

i#!/bin/bash
'‘matchbox-window-manager -use_titlebar no &

'
iexec xfce4-terminal
'

You may need to "apt-get install matchbox-window-manager." first. This is a tiny window manager which also has a few flags that
simplify embedded use. Now enable this session manager and restart slim to restart x11 and show it now.

i
ichmod a+x /usr/bin/mini-x-session

irm /etc/alternatives/x-session-manager

iln -s /usr/bin/mini-x-session /etc/alternatives/x-session-manager
iservice slim restart

H

If the x-session-manager process ever closes x11 will restart. The exec command allows a new process to take over the existing PID.
In the above example xfce4-terminal takes over the PID of x-session-manager. If the terminal is closed with commands like exit the
slim/x11 processes will restart.

5 Ubuntu Core

Ubuntu Core is a new distribution provided by Canonical targetted towards embedded/IoT projects. This requires users to generate
"snap" packages for their application, but provides a mechanism for save remote updates to the OS and packages. Our kernel is based
on Ubuntu 16's 4.4 based kernel to provide the best compatibility and support. Bug fixes to units using our kernel snap are provided
through the ubuntu core app store.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 20/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Read more about Ubuntu Core here (https://www.ubuntu.com/core) .

5.1 Getting Started with Ubuntu Core

Download our latest image here (ftp:/ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-linux/distributions/ubuntu-
core/ubuntu-core-16-latest.img.bz2) .

Write this to an SD card with:

iwget ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-1inux/distributions\
//ubuntu-core/ubuntu-core-16-latest.img.bz2

ibzipZ -d ubuntu-core-16-latest.img.bz2

Assuming /dev/sdd is your SD card. Check dmesg after inserting for your device.

Make sure this is the block device (/dev/sdd) and not a partition (/dev/sdd1).

idd if=/path/to/ubuntu-core-16-latest.img bs=4M of=/dev/sdd conv=fsync && sync

This can be written to emmc using the USB production mechanism.

Next make an Ubuntu SSO account (https://login.ubuntu.com/) . Generate SSH keys
(https://help.ubuntu.com/community/SSH/OpenSSH/Keys) and upload your SSH keys (https://login.ubuntu.com/ssh-keys) to your
account.

Once written to either boot media start up the board. After boot has completed it will leave you at a screen:

Ubuntu core has no default username/password and must be configured with their single sign on service to fetch your SSH keys.

Press enter and it will have you confirm DHCP, or use a static network configuration. Once configured it will ask for your Ubuntu
SSO username. This will create an account on the Ubuntu Core image and allow access only with your SSH keys present on the store.
After it has fetched your keys it will print out the ssh commands to connect to your unit which will now allow access just with your
SSH keys.

Connect to the board with:

Note: This must be run on a system that has your SSH keys installed.

Once connected you have access to a shell prompt and can install any needed snaps. See http://snapcraft.io/ for more information on
developing your own snaps for your application which can be uploaded to the store.

5.2 Ubuntu Core Reference Links

https://myapps.developer.ubuntu.com/dev/click-apps/
https://github.com/embeddedarm/ubuntu-core
https://github.com/embeddedarm/ubuntu-kernel
http://snapcraft.io/

http://snapcraft.io/docs/
https://www.ubuntu.com/core

6 Yocto

Yocto is our recommended distribution for graphics packages as the software includes patches to support the GPU. X11 in Yocto
includes drivers for providing 2D support as well. Support is also provided for OpenGLES 1&2, as well as GStreamer acceleration,
included standalone or with Qt. Yocto also provides cross toolchains that include the rootfs. This toolchain allows integration with the
Qt Creator IDE and Eclipse.

Yocto does not provide binary security updates. This distribution also does not have any remote repository of pre-built applications.
For either of these we features we recommend using Debian.

Our current Yocto support is based off of Yocto 2.2 "Morty".

6.1 Getting Started with Yocto

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 21/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Yocto itself is a set of scripts and tools used to build a custom Distribution. In our default images we try to include all the common
utilities requested by users. Rebuilding Yocto should not be necessary for many users, but is possible if needed. Once installed the
default user is "root" with no password.

Our Yocto rootfs is available here:

Yocto Download Links

Yocto Iy wnload Link

Image

ts-x11- | Download (ftp:/ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-linux/distributions/yocto/morty/ts-x11-
image image-tsimx6-latest.rootfs.tar.bz2)

To write this to an SD card, first partition the SD card to have one large ext3 partition. See the guide here for more information. Once
it is formatted, extract this tar with:

i# Assuming your SD card is /dev/sdc with one partition

mkfs.ext3 /dev/sdcl

mkdir /mnt/sd/

isudo mount /dev/sdcl /mnt/sd/

isudo tar --numeric-owner -jxf ts-x11l-image-tsimx6-latest.rootfs.tar.bz2 -C /mnt/sd
'sudo umount /mnt/sd

isync

The ext4 filesystem can be used instead of ext3, but it may require additional options.
U-Boot does not support the 64bit addressing added as the default behavior in recent
Note: revisions of mkfs.ext4. If using e2fsprogs 1.43 or newer, the options "-O
~64bit,"metadata_csum" must be used with ext4 for proper compatibility. Older
versions of e2fsprogs do not need these options passed nor are they needed for ext3.

To rewrite the eMMC, boot to the SD card. You cannot rewrite the eMMC while it is mounted elsewhere, or used to currently boot the
system. Once booted to the SD, run:

imkfs.extB /dev/mmcblk2pl

mkdir /mnt/emmc

imount /dev/mmcblk2pl /mnt/emmc

wget -qO0- ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/\
its-4900-1linux/distributions/yocto/morty/ts-x11-image-tsimx6-\
ilatest.rootfs.tar.bzz | tar --numeric-owner xj -C /mnt/emmc/
umount /mnt/emmc

isync

The same commands can be used to write SATA by substituting /dev/mmcblk2p1 with /dev/sdal.

6.2 Yocto Networking

Our Yocto image uses systemd which stores its network files in "/etc/systemd/network/". The simplest network config for a DHCP
configuration would look like this:

In /etc/systemd/network/eth.network

E[Match]
Name=eth*

E[Network]
IDHCP=yes

i[Match]
iName:etha

iAddress=192.168.0.50/24
\Gateway=192.168.0.1

E[Network]
IDNS=192.168.0.1 :

irm /etc/resolv.conf i
iecho "nameserver 8.8.8.8" > /etc/resolv.conf
iecho "nameserver 8.8.4.4" >> /etc/resolv.conf

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 22/75

7.2.2018 TS-7970 - Technologic Systems Manuals
To use the DNS assigned by DHCP, run:

For more information on what options are available to configure the network, see the systemd network documentation
(http://www.freedesktop.org/software/systemd/man/systemd.network.html) .

6.2.1 Yocto Wireless

Yocto uses systemd to start wpa_supplicant, and systemd-networkd to set an IP address via a static setting or DHCP.

Scan for a network

iifconfig wlan@ up
Scan for available networks
iiwlist wlan@ scan

[l
=
)
o
=]
=
iy
oa
=
i}
1Y)
=
®
0]
n
©n
s
a
[«%
)
-+
(V)
c
i}
+
~
]
<
<
o
c
]
©
()
n
)
=
o
>
[<%

imkdir /etc/wpa_supplicant/
iwpa_passphrase "ssid name" "full passphrase" >> /etc/wpa_supplicant/wpa_supplicant-wlan®.conf

root@ts-imx6-q:~# wpa_supplicant -iwlan@ -c/etc/wpa_supplicant.conf -B

Successfully initialized wpa_supplicant

root@ts-imx6-q:~# [306.924691] wlan@: authenticate with 28:cf:da:bo:f5:bb

[306.959415] wlan@: send auth to 28:cf:da:b@:f5:bb (try 1/3)

[306.968137] wlan@: authenticated

[306.978477] wlan@: associate with 28:cf:da:bo:f5:bb (try 1/3)

[306.988577] wlan@: RX AssocResp from 28:cf:da:b@:f5:bb (capab=0x1431 status=0 aid=9)
[3067.009751] wlan@: associated

[307.012768] IPv6: ADDRCONF(NETDEV_CHANGE): wlan@: link becomes ready

[307.047989] wlcore: Association completed.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 23/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Use "iwconfig wlan0" to verify an "Access Point" is specified to verify a connection. This will also report the link quality to the AP.

Wireless may be associated, but this does not get an IP on the network. To connect to the internet or talk to the internal network first
configure the interface. See configuring the network, but on many networks only a DHCP client is needed:

i# Assuming the same path for the wpa conf file as shown above i
isystemctl enable wpa_supplicant@wlan®
isystemctl start wpa_supplicant@wlan@

Once this service is started it will bring up the wlan0 link and associate it to the SSID that is noted in the wpa_supplicant.conf file.
Configure the IP settings the same way as a wired network.

In /etc/systemd/network/wlan0.network

i[Match]
iName:wlana

E[Network]
IDHCP=yes

i[Match]
Name=wlane

\[Network]
iAddress=192.168.0.50/24
\Gateway=192.168.0.1
iDNS=192.168.0.1

For more information on what options are available to configure the network, see the systemd network documentation
(http://www.freedesktop.org/software/systemd/man/systemd.network.html) .

6.3 Yocto Application Development

Yocto provides cross toolchains including the native tools and required arm files. First get the toolchain by right clicking and "Save

as

= x86_64 (ftp:/ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-linux/distributions/yocto/morty/toolchain/poky-glibc-
x86_64-meta-toolchain-qt5-cortexa9hf-neon-toolchain-2.2.2.sh)

= 1686 (ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-linux/distributions/yocto/morty/toolchain/poky-glibc-
1686-meta-toolchain-qt5-cortexa9hf-neon-toolchain-2.2.2.sh)

In the case of either toolchain you would run these commands to install them:

ichmod a+x poky-*.sh i
isudo . /poky-*.sh i

isource /opt/poky/2.2.2/environment-setup-cortexadhf-neon-poky-linux-gnueabi

i# Assuming you have a hello.c: i
'$CC hello.c -o hello !

WIf you cat the environment file you can see all the paths this sets up.

i$ echo $CC

\arm-poky-linux-gnueabi-gcc -march=armv7-a -marm -mthumb-interwork -mfloat-abi=hard -mfpu=neon -mtune=cortex-a9 --sysroot=/opt/poky/2.2.2/sysroots/
i [
L o o o e e e mmmm @ mmmmm @ mmm @ mm @ mmm @ mm @ mmm i mmmmm e mmmee H

It is also possible to develop over the serial console or ssh on the board itself. Yocto includes development tools such as vim, gcc,
g++, gdb, make, autoconf, binutils, and more. See the next sections for using the cross toolchain with IDEs.

6.3.1 Configure Qt Creator IDE

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 24/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Note: This guide is intended for our stock Yocto image using systemd. On custom images the
directions should apply if a toolchain is compiled. "bitbake meta-toolchain-qt5", and
update the paths if you are using a different distribution.

Install the qgtcreator tool on a host Linux PC. Any recent version from a modern Linux distribution should be sufficient and work
without issue. On a Debian/Ubuntu desktop, run:

You will also need to download the SDK which includes the Qt support (Right click and save as):

= x86_64 (ftp:/ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-linux/distributions/yocto/morty/toolchain/poky-glibc-
x86_64-meta-toolchain-qt5-cortexa9hf-neon-toolchain-2.2.2.sh)

= 1686 (ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-linux/distributions/yocto/morty/toolchain/poky-glibc-
1686-meta-toolchain-qtS-cortexa9hf-neon-toolchain-2.2.2.sh)

You can install these with:

(7]
c
Q
o
=3
]
n
=
~
he)
]
A
<
'
*
wn
=

These instructions assume the path will be default at "/opt/poky/2.2.2/".

An environment script has to be sourced before every execution of gtcreator. Without

Note: i builds will fail,

isour‘ce /opt/poky/2.2.2/environment-setup-cortexadhf-neon-poky-linux-gnueabi
iqtcreator

Qt Creator needs to be configured to build using this toolchain. Once Qt Creator is launched, select Tools->Options->Devices. Click
"Add," select "Generic Linux Device," and then click "Start Wizard".

r[“-‘ Davice Configuration Wizard Selection

Available device types:

Generie Linux Device
BlackBerry Device
QMY Device

Carncal | | Start Wizard

On the next page specify the IP address or hostname of the device running Yocto. In this example, the unit has an IP address of
192.168.2.45 obtained by DHCP. The default Yocto image will use "root" with no password to connect. Set the name to TSIMX6.

Eanieebkan

It will then verify connectivity. Click close and continue.
https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 25/75

7.2.2018 TS-7970 - Technologic Systems Manuals

fioha e + 53 La62 WITVRT]
Grte ank walethe
walalds

Dovice tesh Finished suocessPuliy.

If this returns an error: "SSH connection failure: SSH Protocol error: Server and client
capabilities don't match. Client list was: aes128-cbc,3des-cbc.

Server list was chacha20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes256-

Note: ctraes128-gcm@openssh.com,aes256-gecm@openssh.com.". If this happens connect to
the board's console and edit /etc/ssh/sshd _config and append the line "Ciphers +aes128-
cbc". Reset sshd, or reboot the board and try again. Upgrading Qt Creator may also
resolve this issue.

The paths given in the images may not match the latest toolchain, but are meant to
Note: show where these values would go. Follow the text appropriate to the architecture of
your host PC for the correct values

In the left column of the Options menu, select "Build & Run". On the "Qt Versions" tab, click "Add" in the upper right to configure
the TS Kit. Qt Creator may see the "gmake" binary added to your path from the sourced environment script. If this is detected add in
the string "TSIMX6" to the title. If not, add the full path and ensure the version name is set to "TSIMX6 QT 5.7.1". This will allow it
to be recognized when setting the right binary for the kit.

e hl
1686 i/opt/poky/2.2.2/sysroots/x86-pokysdk-1linux/usr/bin/qt5/qmake |
L e e e e e e oo oo e d
e 1
X86 64 i/opt/poky/2.2.2/sysroots/x86_64-pokysdk-linux/usr/bin/qt5/qmake}
L e e e e e e e e e e e e e a
s A un
- = =
0 i." " T
G
*
-
~¥
a

On the "Compilers" tab click "Add", and select "GCC". Set the Name to "TSIMX6 GCC". For the "Compiler Path" use one of the
following:

1686 E/opt/poky/Z .2.2/sysroots/i686-pokysdk-1linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-g++ i

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 26/75

7.2.2018 TS-7970 - Technologic Systems Manuals

T ER T Ll b

On the "Debuggers" tab click "Add". For name, specify "TSIMX6 GDB". For the paths, specify the location of gdb with one of the
following:

1686 E/opt/poky/Z .2.2/sysroots/i686-pokysdk-1linux/usr/bin/arm-poky-1linux-gnueabi/arm-poky-linux-gnueabi-gdb i

L e e e e e e a
!
s &

— =
g e

-

&

*

-

3

@

2

On the "Kits" tab click "Add". For "Name", enter "TSIMX6". Set device type to "Generic Linux Device". Set the device to "TSIMX6
(default for Generic Linux)". Set Qt mkspec to:

T T T T T T E e i
i/opt/poky/z. 2.2/sysroots/cortexadhf-neon-poky-linux-gnueabi/usr/1lib/qt5/mkspecs/linux-oe-g++ i
L e o o o o e e e e e e o o o e o o o e e o o o e o o o o o o o o o o o e e e 2 e 2 2 2 2 2 2 2 2 o o o o o o o o o o o o o e en 4

Make sure there is no space at the end.

Set "Compiler" to "TSIMX6 GCC". Set "Debugger" to "TSIMX6 GDB". Set the "Qt version" to "TSIMX6 QT 5.7.1". Finally, click
Apply.

e
-
-
LT
G et b =
& o
o 0o
-
a

If there is a red exclamation point over the kits icon, it indicates that the compiler ABI
does not match. In this case, you will need to revisit the "Compiler", "Debugger", and

Note: "Qt Versions" tabs, and browse the host PC for these files manually rather than
copy/pasting the paths from these instructions. This is a bug in Ubuntu 16.04's Qt
Creator, and may be in later versions as well.

At this point Qt Creator is set up to begin a hello world project.
6.3.1.1 Qt Creator Hello World

Open the Qt Creator IDE and click "New Project".

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 27175

TS-7970 - Technologic Systems Manuals

7.2.2018

-

| Tor) | Er | e e e]
Qt provides multiple templates for application development. For this example select the default "Qt Widgets Application".

s sy

Specify the location for your project. Keep in mind that the compile process will create more build paths in the "Create In:" path.

Intradction and Project Locatien
b s v et T e o

i e
s o s i

Next, select the kit. The TSIMXG6 is the kit we set up in the last section, but you may have other kits preinstalled on your system
These can be used for testing graphical development on your PC. Keep in mind distribution versions may contain different

functionality.

KIt Sslactisn
3 Kbk it i i i £ gl e e B

Next select the class and filename information. This example will use the defaults.

Class information

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

28/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Select any version control for the project. The example will use none and finish the wizard. This will generate the new project.

Prajset Managarm sl

|
! target.path = /home/root/
i INSTALLS += target

= ol el igis em Bl
Aty ralemptprs | "
- -

From here, you can begin customizing your application. Refer to the official Qt documentation for more information

= Qt 5 Documentation (http://qt-project.org/doc/qt-5/index.html)
6.3.2 Yocto Hide Cursor

The default image includes the xcursor-transparent icon theme. This can hide the mouse pointer. To enable this, run these commands:

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 29/75

7.2.2018 TS-7970 - Technologic Systems Manuals

imkdir -p ~/.icons/default/

iecho "[Icon Theme]" > ~/.icons/default/index.theme
lecho "Inherits=xcursor-transparent” >> ~/.icons/default/index.theme

i# Now reset x, or reset the unit and the cursor will be invisible.

6.4 Yocto Startup Scripts

To have a custom headless application start up at boot a systemd service needs to be created. Create the file
/etc/systemd/system/yourapp.service with contents similar to below:

i[Unit]

Description=Run an application on the i.MX6
E[Service]

\Type=simple
iExecStaPt=/usr/local/bin/your_app_or_script

i[Install]
iwantedBy=multi—useP.target

If you depend on networking you should add "After=network.target" in the Unit section. Once this file is in place, it cab be added to
automatic startup with the following:

|
i# Start your app on bootup, but will not start it now
isystemctl enable yourapp.service

i

i# Start your app now, but doesn't change auto startup
isystemctl start yourapp.service

See the systemd documentation
Note: (http://www.freedesktop.org/software/systemd/man/systemd.service.html) for in depth
documentation on services.

To set up a graphical application startup, change the file: /usr/bin/mini-x-session

At the end of the script replace "matchbox-terminal" with your application (absolute path may need to be specified):

imatchbox—terminal&
iexec matchbox-window-manager

The exec statement must be last in the script in order to take over this script's PID for correct operation.

6.5 Custom Build Yocto

If our stock Yocto distribution does not meet all of your needs, it is possible to re-build it with a custom set of features. Including less
options for a smaller footprint, or more packages to add more features.

While we may provide guidance, our free support does not include every situation that can cause a build failure in generating custom
images.

= Build Yocto Distribution

7 QNX

QNX is an RTOS that supports the .MX6 CPU. We provide a BSP for the TS-4900 and TS-7970 quad core or solo based on QNX
Neutrino (http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html) 6.6.0. The supporting files are available here:

= Disk Image: ts7970-qnx-6.6.0-latest.dd.bz2 (ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7970-qnx/images/ts7970-qnx-6.6.0-
latest.dd.bz2) (md5) (ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7970-qnx/images/ts7970-qnx-6.6.0-latest.dd.bz2.md5)

= Quad core source BSP_freescale-imx6q-ts7970-latest.tar.gz (ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7970-
qnx/source/BSP_freescale-imx6q-ts7970-latest.tar.gz) (md5) (ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7970-
qnx/source/BSP_freescale-imx6q-ts7970-latest.tar.gz.md5)

= Solo core source BSP_freescale-imx6dl-ts7970-latest.tar.gz (ftp:/ftp.embeddedarm.com/ts-arm-sbc/ts-7970-
qnx/source/BSP_freescale-imx6dl-ts7970-latest.tar.gz) (md5) (ftp://ftp.embeddedarm.com/ts-arm-sbe/ts-7970-
gnx/source/BSP_freescale-imx6dl-ts7970-latest.tar.gz.md5)

We provide support for booting QNX on our platforms, but further support is provided by QNX
https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 30/75

7.2.2018 TS-7970 - Technologic Systems Manuals
= QNX Support (http://www.qnx.com/support/)

Known Working:

UARTs 1-5

Ethernet

12C1,12C2

SD (/dev/hd0)

eMMC (/dev/emmcO0)

USB Host

SPI NOR (/dev/fs0)

HDMI (TS-7970 only)

LCD Interface (TS-TPC-8390 with TS-4900 only)
RS485

Known not working:

= WIFI
= FPGA based UARTSs

Not yet tested:

= 210 (Second gig eth)

7.1 QNX BSP

Before compiling QNX be sure to edit the file: src/hardware/startup/boards/imx6x/ts7970/board.h Set either BOARD TS7970 or
BOARD_TS4900 depending on the target board.

We have also included a port of tshwctl which is used to access the FPGA. This allows you to read/write FPGA registers and to
change the crossbar. For example, to set up auto TXEN on the TS-7970 RS-485 port (/dev/ser4):

lexport MB_TXD=TTYSER4_TXD
lexport TTYMAX1_RXD=GPIO

lexport TTYSER4_RXD=MB_RXD_485
lexport TXD_232_COM=GPIO

lexport MB_TX_EN_485=TTYSER4_TXEN
itshwctl -b @x7970 -s

itshwctl -b @x797@ -c

! TTYSER4_RXD (in) (©) MB_RXD_485

; MB_TXD (in) (@) TTYSER4A_TXD
! MB_TX_EN_485 (in) (@) TTYSER4_TXEN
! TTYMAX1_RXD (in) () GPIO

i TXD_232_COM (in) (@) GPIO

T e m a
itshwctl -b 0x7970 -a 4 -x 115200 -i 8nl ;
L e oo ettt i

/dev/ser4 is now configured for RS485 traffic.

7.2 QNX Booting

Write the example image to a disk.

ibzip2 -d ts7976-qnx-6.6.0-20150707.dd.bz2
E#Replace sdx with your device. Try Lsblk to find your SD card.

isudo dd if=ts7970-qnx-6.6.0-20150707.dd bs=4M of=/dev/sdx
isync

Reinsert or partprobe the disk, and there will be a single partition present. The partition includes the QNX IFS, and a u-boot script. On
startup the imx6 is configured to launch the hush script. If present, at /boot/boot.ub on either the SD or eMMC depending on if the SD
boot jumper is present. The script loads the FPGA, then copies the QNX ifs into memory and jumps into it to begin execution.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 31/75

7.2.2018 TS-7970 - Technologic Systems Manuals

8 Android

This Android distribution is based off of Freescale's port of AOSP to the .MX6 platform. This allows users to run existing APKs to
use this platform with no modifications, or develop new projects using Android Studio.

8.1 Getting Started with Android

Android must be run from the eMMC. This can be written with the USB production tool, or from the SD card. To use the USB drive,
follow the instructions here, and download the image and copy it to the USB drive as emmcimage.dd.bz2.

Download the Android image here:

= android-7.1.1-tsimx6-tiwifi-latest.dd.bz2 (ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7990-linux/distributions/android/) (md5
(ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7990-linux/distributions/android/android-7.1.1-tsimx6-tiwifi-latest.dd.bz2.md5))

To load from the SD card, boot up to any Linux distribution from the SD card such as the default Yocto. Once booted here, run:

iwget -q0- ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7990-1inux\
/distributions/android/android-7.1.1-tsimx6-tiwifi-\
ilatest.dd.bz2 | bzcat | dd bs=4M of=/dev/mmcblk2 conv=fsync

This will download it, decompress it, and write it to the eMMC drive. Reboot and boot into Android.

8.2 Android Networking

On startup android will automatically start dhcped on eth0Q, or WIFI can be configured via the Settings->Wi-Fi menu.

8.3 Android Software Development

AOSP development works exactly the same as on an Android phone, except the Google APIs associated with the store are not
available. See The android documentation for getting started on development:
http://developer.android.com/training/basics/firstapp/index.html

8.4 Android Manually Install APK

APKs can be installed just like on any other Android device. On the device go to settings->About Tablet and press the "build number"
until the text states "You are now a developer". Go back to Settings and there is now a "Developer Options" menu. Under Debugging
enable USB Debugging. You should now be able to run adb commands to install apk files.

2 i
iadb install </path/to/app.apk> i
L o o o o e e e e e o e e o o o o o o o e e e o e o o o o o o o o o o o o o e e e e e o 2 2 2 2 e o o o o o o o o o o o o o o o e 4

9 Backup / Restore

9.1 MicroSD Card

These instructions assume you have an SD card with one partition. Most SD cards ship this way by default. If the card has had its
partition table modified this can be corrected with a tool like 'gparted' or 'fdisk’.

Plug the SD card into a USB reader and connect it to a linux workstation PC. Newer distributions include a utility called 'Isblk' which
lists all block devices like a USB SD card reader:

2 1|
1sblk i
O N
e 1
! NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT :
| sdy 8:0 @ 400G @ disk

! fsdvi 8:1 @ 398G @ part /

i bsdv2 812 e 1K @ part

i Lsdvs 8:5 @ 2G @ part [SWAP]

| sro 11:0 1 1024M © rom

I sdx 8:32 1 3.9G O disk

! Fsdx1 8:33 1 7.9M @ part

P bsdx2 8:3a 1 2M @ part

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 32/75

7.2.2018 TS-7970 - Technologic Systems Manuals
i Fsdx3 8:35 1 2M @ part i
i Lsdxa 8:36 1 3.8 @ part ;
L e e e e e oo e D e o o m o e m o m e mmmm i mmmm e N
In this case the SD card is 4GB, so sdX is the target device. Note that on your system, sdX will not be a real device, it could be sda,
sdb, mmceblkO, etc. Technologic Systems is not responsible for any damages cause by using the improper device node for imaging an
SD card.
After plugging in the device after Linux has booted you can use dmesg to print out the kernel log. When the USB drive is added it
will append to the end of that file. Try running:
idmesg | tail -n 100 i
L e o o e e e e oo o e e e e oo e e e e e e o e o e e e e e e o e e e e e e m o e e o o o o mm oo m @ mmm e mmmm e H
e i
i scsi 54:0:0:0: Direct-Access Generic Storage Device ©.00 PQ: © ANSI: 2 i
i sd 54:0:0:0: Attached scsi generic sg2 type ©
i sd 54:0:0:0: [sdX] 3862528 512-byte logical blocks: (3.97 GB/3.84 GiB) i
L o o o e e e mm o mmm o mmm @ mmmm @ mm @ mmm @ mmm @ mmmm e mmmm e mmmee H
In this case, sdXc is shown as a 3.97GB card. Note that on your system, sdX will not be a real device, it could be sda, sdb, mmcblk0,
etc. Technologic Systems is not responsible for any damages cause by using the improper device node for imaging an SD card.
The following commands will reformat the first partition of the SD card, and unpack the latest filesystem on there:
e H
i# Verify nothing else has this mounted
‘sudo umount /dev/sdX1 i
isudo mkfs.ext3 /dev/sdX1 i
isudo mkdir /mnt/sd :
isudo mount /dev/sdX1 /mnt/sd/ i
wget ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7990-1inux/distributions/debian/debian-armhf-jessie-latest.tar.bz2
isudo tar --numeric-owner -xf debian-armhf-jessie-latest.tar.bz2 -C /mnt/sd :
isudo umount /mnt/sd :
isync ;
L e o e e e e o e e e e e o e e o mmm o o mm o m m m mm m m m mm o o o o m m m m mm o o m mmm o o mm o m e mm e mmmee d
The ext4 filesystem can be used instead of ext3, but it may require additional options.
U-Boot does not support the 64bit addressing added as the default behavior in recent
Note: revisions of mkfs.ext4. If using e2fsprogs 1.43 or newer, the options "-O
~64bit,"metadata_csum" must be used with ext4 for proper compatibility. Older
versions of e2fsprogs do not need these options passed nor are they needed for ext3.
Once written, the files on disk can be verified to ensure they are the same as the source files in the archive. Reinsert the disk to flush
the block cache completely, then run the following commands:
L H
mount /dev/sdX1 /mnt/sd i
icd /mnt/sd/ ;
isudo md5sum --quiet -c mdSsums.txt i
ied - :
jumount /mnt/sd i
isync i
L o o o e e e e e e e e e oo e e e e e e e e e e e e e m o e o o m o mmmm i m e mmm e m e mmmm e mmmee H
The md5sum command will report what differences there are, if any, and return if it passed or failed.
9.2 eMMC
Write the image:
These commands assume you are booted to the SD card, and
L H
i# Verify nothing else has this mounted
iumount /dev/mmcblk2p1 i
imkfs.extB /dev/mmcblk2pl i
inkdir /mnt/emmc i
mount /dev/mmcblk2pl /mnt/emmc i
wget ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-1inux/distributions/yocto/morty/ts-x11-image-tsimx6-latest.rootfs.tar.bz2 i
itar --numeric-owner -xf ts-x11-image-tsimx6-latest.rootfs.tar.bz2 -C /mnt/emmc i
umount /mnt/emmc i
isync i
L e e e H
The ext4 filesystem can be used instead of ext3, but it may require additional options.
U-Boot does not support the 64bit addressing added as the default behavior in recent
Note: revisions of mkfs.ext4. If using e2fsprogs 1.43 or newer, the options "-O

~64bit,"metadata_csum" must be used with ext4 for proper compatibility. Older
versions of e2fsprogs do not need these options passed nor are they needed for ext3.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 33/75

7.2.2018 TS-7970 - Technologic Systems Manuals
After it is written you can verify the data was written correctly.

i# Drop any block cache

iecho 3 > /proc/sys/vm/drop_caches
imount /dev/mmcblk2pl /mnt/emmc
icd /mnt/emmc/

isudo md5sum -c md5sums.txt
lumount /mnt/emmc

isync

The md5sum command will report what differences there are, if any, and return if it passed or failed.
Backup the image:

First boot the board to any SD image. The SD should have enough space for the compressed image of your eMMC. From our default
image this is ~S00MB. To create an image to your SD card:

mkdir /mnt/sd/

imount /dev/mmcblklpl /mnt/sd/

icd /mnt/sd/

tar --numeric-owner -cjf /root/backup.tar.bz2 *
cd -

umount /mnt/sd/

10 Compile the Kernel

This board uses a 4.1.15 kernel on most all images. Our kernels are based on NXP's which are changed from upstream for their board
support. We change them to support the various hardware we use with this processor.

= embeddedarm/linux-3.10.17-imx6 (https://github.com/embeddedarm/linux-3.10.17-imx6)
= The "imx 4.1.15 1.0.0_ga" branch includes support for our TS-4900, TS-7970, TS-7990, and TS-4100.
= This kernel works with all our Debian releases, Ubuntu, Yocto Jethro, and Yocto Krogoth.

You can pick the branch below. The kernel can be rebuilt by cross compiling from an X86/X86 64 Linux. Our default kernels are
rebuilt using the toolchains built by Yocto. You can download the appropriate cross toolchain for your Linux system here:

= X86 64 (ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-linux/distributions/yocto/jethro/toolchains/poky-glibc-
x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-2.0.2.sh)

= 1686 (ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-linux/distributions/yocto/jethro/toolchains/poky-glibc-
1686-meta-toolchain-qt5-cortexa9hf-vip-neon-toolchain-2.0.2.sh)

ichmod a+x poky-*toolchain-*.sh

isudo . /poky-*toolchain-*.sh

This will ask for the install directory for the toolchain. Our instructions will assume the default path is used.

This also requires several tools from your distribution. For Ubuntu/Debian:

)
<
aQ
o
QD
o
+
'
o
]
+
.
>
n
+
Q
=
-
o
>3
+
o
c
=
=
Q
'
m
[
n
m
>
-+
.
Y]
—
—
N
(o}
©
c
T
[~3
o
o
~+
'
+
o
o
—
%)
—
[
(=
=1
o
c
>
w
m
)
=
u
1
Q
m
<

i# This will pull our shared kernel, using the 4.1.15 branch, use a folder Llinux-tsimx, and only

W download the Llatest changes.

igit clone https://github.com/embeddedarm/linux-3.10.17-imx6.git -b imx_4.1.15_1.0.0_ga linux-tsimx --depth 1
icd linux-tsimx

i# These two must be run each time you open a terminal to build the kernel.
isource /opt/poky/2.0.2/environment-setup-cortexaShf-vfp-neon-poky-linux-gnueabi
iexport LOADADDR=0x10008000

imake ts4900_defconfig

1
W# Make any changes in "make menuconfig" or driver modifications, then compile
make && make uImage

1

Eexport DEV=/dev/sdcl

'sudo mount "$DEV" /mnt/sd

isudo rm /mnt/sd/boot/uImage

isudo cp arch/arm/boot/uImage /mnt/sd/boot/uImage

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 34/75

7.2.2018 TS-7970 - Technologic Systems Manuals

isudo cp arch/arm/boot/dts/imx6*ts*.dtb /mnt/sd/boot/
iINSTALL_MOD_PATH:"/mnt/sd" sudo -E make modules_install
{INSTALL_HDR_PATH="/mnt/sd" sudo -E make headers_install
isudo umount /mnt/sd/

isync

10.1 Change Kernel Splash Screen

The kernel splashscreen allows 224 colors. It also allows up to the full screen resolution, but for fastest boot speed it should be kept as
small as possible. The image will be centered around a black background.

To convert your image, for example, "mylogo.png":

iconvert mylogo.png mylogo.ppm

‘ppmquant 224 mylogo.ppm > mylogo-224.ppm

ipnmnoraw mylogo-224.ppm > logo_user_clut224.ppm

icp logo_user_clut224.ppm <kernel build sources>/drivers/video/logo/

Now recompile the kernel following the guide in the previous section.

Add the kernel cmdline "logo.nologo" in u-boot to completely disable the splash screen.

11 Production Mechanism

On startup if SW1 is pressed when power is applied then TS-7970's U-boot will look in a USB drive for a file called /tsinit.ub. If
found it will copy this to ${loadaddr} and "source $ {loadaddr}" to run this u-boot script. This is intended for the initial production of
boards and allows mass programming boards with a USB thumbdrive.

The blast image and scripts require a minimum of 50 MB; this plus any disk images or tarballs used dictate the minimum disk size
required. The USB drive must have at least 1 partition, with the first partition being formatted ext2/3 or fat32/vfat.

The ext4 filesystem can be used instead of ext3, but it may require additional options.
U-Boot does not support the 64bit addressing added as the default behavior in recent
Note: revisions of mkfs.ext4. If using e2fsprogs 1.43 or newer, the options "-O
~64bit,"metadata_csum" must be used with ext4 for proper compatibility. Older
versions of e2fsprogs do not need these options passed nor are they needed for ext3.

E# This assumes your thumbdrive 1is /dev/sdc:

isudo mkfs.ext3 /dev/sdcl

isudo mkdir /mnt/sd/

isudo mount /dev/sdcl /mnt/sd/

isudo tar --numeric-owner -xf /path/to/tsimx6_usb_blaster-latest.tar.bz2 -C /mnt/sd/

i# Now you would create your images on the /mnt/sd/, but for

W an example these steps would write our latest debian image:

isudo wget -0 /mnt/sd/emmcimage.tar.bz2 http://ftp.embeddedarm.com/ftp/ts-socket-macrocontrollers/ts-4900-1linux/distributions/debian/debian-armhf-je
W You can use a symlink to write the same image to sd

isudo In -s /mnt/sd/emmcimage.tar.bz2 /mnt/sd/sdimage.tar.bz2

isudo umount /mnt/sd

isync

1 >

The USB drive boots into a small buildroot initramfs environment with filesystem and partitioning tools. This can be used to format
SD, eMMC, SATA, or even rewrite u-boot and its environment. The buildroot starts up and calls /blast.sh on the USB device. By
default this script is set up to look for a number of of specific files on the USB disk and write to media on the host device. Upon
completion of the script, the green or red LEDs will blink to visually indicate a pass or fail of the script. This script can be used
without modification to write images from USB with these filenames:

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 35/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Tar of the filesystem. This will repartition the SD card to 1 ext4 partition and extract this tar to the
sdimage.tar.bz2 filesystem. If present, a /mdSsums.txt will be checked and every file can be verified on the

CSDd filesystem. This mdSsums file is optional and can be omitted, but it must not be blank if present.
ar
sdimace.dd.bz2 Disk image of the card. This will be written to mmcblk0 directly. If present a sdimage.dd.md5 will
ge.ad. cause the written data on the SD card to be read back and verified against this checksum.
Tar of the filesystem. This will repartition the eMMC to 1 ext4 partition and extract this tar to the
emmcimage.tar.bz2 | filesystem. If present, a /mdSsums.txt will be checked and every file can be verified on the
eMMC filesystem. This mdSsums file is optional and can be omitted, but it must not be blank if present.
emmcimace.dd.bz2 Disk image of the card. This will be written to mmcblk1 directly. If present a emmcimage.dd.md5
ge.ad. will cause the written data on the eMMC to be read back and verified against this checksum.
Tar of the filesystem. This will repartition the SATA drive to 1 ext4 partition and extract this tar to
S sataimage.tar.bz2 |the filesystem. If present, a /mdSsums.txt will be checked and every file can be verified on the
?I’I]‘A filesystem. This mdSsums file is optional and can be omitted, but it must not be blank if present.

Disk image of the card. This will be written to sda directly. If present a sataimage.dd.md5 will cause

sataimage.dd.bz2 the written data on the SATA to be read back and verified against this checksum.

This will rewrite u-boot on the SPI flash. This will also verify the imx_type variables match before
SPI |u-boot.imx allowing it to be rewritten to make sure the RAM configs match. If u-boot.imx.md5 is present the
SPI flash will be read back and verified.

1. 1 SATA is only present on the Dual/Quad CPUs

Most users should be able to use the above script without modification, but our buildroot sources are available from our github repo
(https://github.com/embeddedarm/buildroot-2017.05) . To build the whole setup and create a USB drive, the following commands can
be used. This will wipe any data on the specified partition and replace it with an ext2 formatted filesystem. This filesystem will have
all of the necessary files written to it to create a bootable USB drive. Note that this must be the first partition of the disk.

i# Assuming /dev/sdcl is your usb drive's first partition
imake ts4900_defconfig && make &% sudo make_usb_prog.sh /dev/sdcl

12 Features

12.1 ADC

The TS-7970 includes 3 channels of current-loop sensing ADC that can sample a 4-20mA current loop at about 2/3 samples per
second. Note, these ADC cannot be used for voltage sensing. These are accessed using the tsmicroctl utility:

iroot@ts—ime:# tsmicroctl --info
\VDD_ARM_CAP=1216
'\VDD_HIGH_CAP=2618
VDD_SOC_CAP=1246
IVDD_ARM=1456
'STLAB_P10=0x39B
ISILAB_P11=0x0
ISILAB_P12=0x0
WVIN=12241
V5_A=5207
V3P1=3276
IDDR_1P5V=1571
\V1P8=1894
V1P2=1262
iRAM_VREF=783
\V3P3=3543
ISTLABREV=1
\SILAB_P1@_UA=21472
ISTLAB_P11_UA=0
ISILAB_P12_UA=0

The other samples are the various voltages on the board. The terminal block ADC values are returned with SILAB_Pnn and
SILAB Pnn_UA. These include both raw and microamp values.

12.2 Bluetooth

The WIFI option on the board also includes a bluetooth 4.0 LE module. To connect this to bluez first pulse the BT EN pin, and then
call hciattach:

i# Install bluez if it is not already present
\apt-get update
iapt-get install bluez bluez-tools

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 36/75

7.2.2018 TS-7970 - Technologic Systems Manuals

W Loads firmware for the wifi+BT module
iifconfig wlan@ up

iecho 237 > /sys/class/gpio/export

techo low > /sys/class/gpio/gpio237/direction
iecho high > /sys/class/gpio/gpio237/direction
Esleep .1

thciattach /dev/ttymxcl texas 3000000
ihciconfig hci® up

Bluez has support for many different profiles for HID, A2DP, and many more. Refer to the Bluez documentation for more

information.

12.3 CAN

The TS-7970 CAN ports are located on the #COM?2 Header and the #Terminal Blocks.

The 1.MX6 includes 2 CAN controllers which support the SocketCAN interface. Before proceeding with the examples, see the
Kernel's CAN documentation here (https://www.kernel.org/doc/Documentation/networking/can.txt) .

This board comes preinstalled with can-utils. These can be used to communicate over a CAN network without writing any code. The

candump utility can be used to dump all data on the network

w# First, set the baud rate and bring up the device:
iip link set can@ type can bitrate 250000
iip link set can@ up

Wt Dump data & errors:
icandump can® &

W# Send the packet with:

E#canﬁid = ox7df
wdata 0 = 0x3
wdata 1 = 0x1
WWdata 2 = oxoc

icansend can@ -i @x7Df @x3 @x1 @xec

E## Some versions of cansend use a different syntax. If the above
W# commands gives an error, try this instead:

wcansend can@ 7DF#03010C

1

The above example packet is designed to work with the Ozen Elektronik myOByDic 1610 ECU simulator to read the RPM speed. In

this case, the ECU simulator would return data from candump with:

<0x7e8> [8] 04 41 Oc 60 40 00 00 00
<0x7e9> [8] 04 41 Oc 60 40 00 00 00

In the output above, columns 6 and 7 are the current RPM value. This shows a simple way to prove out the communication before

moving to another language.

The following example sends the same packet and parses the same response in C:

f#include <stdio.h>

#include <pthread.h>

5#inc1ude <net/if.h>

#include <string.h>

winclude <unistd.h>

#include <net/if.h>

#include <sys/ioctl.h>
#include <assert.h>

#include <linux/can.h>
5#include <linux/can/raw.h>

vint main(void)

o

! int s;

int nbytes;

struct sockaddr_can addr;
struct can_frame frame;
struct ifreq ifr;
struct iovec iov;

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

3775

7.2.2018 TS-7970 - Technologic Systems Manuals

struct msghdr msg;
char ctrlmsg[CMSG_SPACE(sizeof(struct timeval)) + CMSG_SPACE(sizeof(__u32))];
char *ifname = "can@";

((s = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < @) {
perror("Error while opening socket");

>

}

strcpy(ifr.ifr_name, ifname);
ioctl(s, SIOCGIFINDEX, &ifr);
addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;

(bind(s, (struct sockaddr *)&addr, sizeof(addr)) < @) {
perror(“socket");

_2;
}
/* For the ozen myOByDic 1610 this requests the RPM guage */
frame.can_id = ox7df;
frame.can_dlc = 3;
frame.data[0] = 3;
frame.data[1] = 1;
frame.data[2] = 0x0c;

nbytes = write(s, &frame, sizeof(struct can_frame));
(nbytes < @) {
perror("write");
_3J

iov.iov_base = &frame;
msg.msg_name = &addr;

msg.msg_iov = &iov;

msg.msg_iovlen = 1;

msg.msg_control = &ctrlmsg;

iov.iov_len = sizeof(frame);

msg.msg_namelen = sizeof(struct sockaddr_can);
msg.msg_controllen = sizeof(ctrlmsg);
msg.msg_flags = O;

{
nbytes = recvmsg(s, &msg, 9);
(nbytes < @) {
perror(“"read");
-4;
}
(nbytes < (int)sizeof(struct can_frame)) {
fprintf(stderr, "read: incomplete CAN frame\n");
}
} (nbytes == 0);

(frame.data[@] == 0x4)
printf("RPM at %d of 255\n", frame.data[3]);

See the Kernel's CAN documentation here (https://www.kernel.org/doc/Documentation/networking/can.txt) . Other languages have
bindings to access CAN such as Python using C-types (https://bitbucket.org/hardbyte/python-can) , Java using JNI
(https://github.com/entropia/libsocket-can-java) .

12.4 COM Ports

This board uses UARTSs from both the CPU and the FPGA. The CPU uart 0 (/dev/ttymxc0) is dedicated to console for Linux and U-
boot and not suggested to be reused. The other CPU UARTS for ttymxc1-4 are usable for end applications. These support up to SMb/s
UART data with DMA.

The FPGA also emulates a MAX3100 UART interface accessible at /dev/ttyMAXO0-2. These UARTSs support a total throughput of
about 1152001, These UARTS include hardware that makes implementing RS-485 half duplex software very simple. If higher
throughput is needed, the FPGA crossbar can be adjusted to use a CPU UART with TXEN support instead.

Our SPI interface matches the max3100 almost entirely, except optionally a single 8-bit
transaction can be sent to act as a chip select between the three uarts supported on our
interface. The default FPGA supports 3 UARTSs on this interface. This is handled
automatically by our driver (max3100-ts).

Note:

RS-485 half duplex's direction control is built into the ttyMAX UARTSs. By default they are connected to the RS-485 ports and no
code is required for the transmit enable to toggle. The CPU UARTSs however do not have transmit enable built in. The FPGA however
includes a core that will toggle transmit enable for ttymxc1/ttymxc3, but it needs to know the baud rate, and symbol size (data bits,
parity, stop bits).

For example:

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 38/75

7.2.2018 TS-7970 - Technologic Systems Manuals
i# Configure mxcl and mxc3 as 115200, 8nl

istty -F /dev/ttymxcl 115200 cs8 -cstopb
itshwectl --autotxen 1

istty -F /dev/ttymxc3 115200 cs8 -cstopb
itshwctl --autotxen 3

The tshwectl tool will read the UART settings from the moment when it is run and it sets up the FPGA's timing for TXEN. Your baud
rate and mode settings should be set before running this.

Using the FPGA for either the ttyMAX uarts, or the CPU uarts, the TXEN timing will happen well under a single bit time (21 of any
baud rate possible by the hardware.

All of these UARTS are accessed using the standard /dev/ interfaces. See these resources for information on programming with
UARTSs in Linux.

= Wikibook (http://en.wikibooks.org/wiki/Serial Programming/Serial Linux)
= Linux Documentation Project Serial Programming Guide (http://tldp.org/HOWTO/Serial-Programming-HOWTO/index.html)

1. 1 Idle periods do not count towards the total throughput limitation.
2. 1 This is a requirement for half duplex MODBUS

The #FPGA includes a crossbar to select where UARTS are routed so these can be changed, but these are the default mappings:

UART Type TX (or +) RX (or -)
ttymxcO | USB USB Device USB Device
ttymxcl (l)rﬁ;/) TTL (onboard Onboard Bluetooth RX Onboard Bluetooth TX
ttymxc2 |TTL (5V Tolerant) HD1 Header pin 12 HD1 Header pin 10
ttymxc3 |RS232 COM2 Header pin 3 COM2 Header pin 2
ttymxc4 |RS232 P1-B Terminal Block pin 7 P1-B Terminal Block pin 8
ttyMAX0 RS485 P.l -A Terminal Block pin 2, COM2 Header P.l -A Terminal Block pin 3, COM2 Header
pin 1 pin 6
ttyMAX1 RS485 RJ45 2W-Modbus pin 4 RJ45 2W-Modbus pin 5
ttyMAX2 RS232 COM2 Header pin 7 COM2 Header pin 8

12.5 CPU

The 1.MX6 is an armv7a Cortex-A9 by NXP. The CPU itself is available in 792MHz, 996MHz, and 1.2GHz with a solo, dual, or quad
COre processor.

Refer to NXP's documentation for in depth documentation on these CPU cores:

= i.MX6S (http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/arm-mcus-and-mpus/i.mx-
application-processors/i.mx-6-processors/i.mx-6solo-processors-single-core-multimedia-3d-graphics-arm-cortex-a9-
core:1.MX6S)

= .MX6Q (http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/arm-mcus-and-mpus/i.mx-
application-processors/i.mx-6-processors/i.mx-6quad-processors-high-performance-3d-graphics-hd-video-arm-cortex-a9-
core:1.MX6Q)

12.6 eMMC

This board includes a Micron eMMC module with builds that have "4096F" in the part number. Our off the shelf builds are 4GiB, but
up to 64GiB are available for larger builds. The eMMC flash appears to Linux as an SD card at /dev/mmcblk2. Our default
programming will include one partition programmed with our Yocto image.

The eMMC are like SD cards in that they should not be powered down during a write/erase cycle. This eMMC module includes
support for setting a fuse for a "Write Reliability" mode, and a "psuedo SLC" mode. With both of these enabled then any writes will
be atomic to 512B. If a sector is being written during a power loss, a block is guaranteed to have either the old or new data. This
scheme is far more resilient to power loss than more traditional flash media. In cases of old 512B data fsck will still be able to recover
a mountable filesystem. In cases where the corrupted file is a database it can still need a mechanism for recovery.

When this pSLC mode is turned on it will reduce the available space to under half, and reduce the write speed.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 39/75

7.2.2018 TS-7970 - Technologic Systems Manuals

See our post on preventing filesystem corruption (https://www.embeddedarm.com/blog/preventing-filesystem-corruption-in-
embedded-linux/) .

The mmc-utils package is used to enable these modes. First determine the exact size of the flash you're using:

2 al
mmc extcsd read /dev/mmcblk2 | grep MAX_ENH_SIZE_MULT -A 1 ;
L e e o o e o e o e e o e mmee H
2 i

Max Enhanced Area Size [MAX_ENH_SIZE_MULT]: exeeelcd i

1 i.e. 1888256 KiB

immc write_reliability set -n @ /dev/mmcblk2
immc enh_area set -y © 1888256 /dev/mmcblk2

After this is run, reboot the board. On all future boots the eMMC will be detected at the smaller size. Changing the enhanced area will
erase the drive. After these mmc commands the disk will need to be rewritten.

12.7 Enclosures

Every enclosure includes a front label which exposes 1 button, and 4 status LEDs.

TS-ENC797

The TS-7970 is available with 3 enclosures matching the various build options:

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 40/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Enclosure Model Images Supported Boards

= TS-7970-1G-4GF-S8S-
RTC-I

= TS-7970-2G-4GF-Q10S-
RTC-E

TS-ENC797

= TS-7970-1G-4GF-S8S-
RTC-CP-WIFI-I

= TS-7970-2G-4GF-Q10S-
RTC-CP-WIFI-E

TS-ENC797-CP

= TS-7970-1G-4GF-S8S-
RTC-CP-WIFI-I with WIFI
antenna

= TS-7970-2G-4GF-Q10S-
RTC-CP-WIFI-E with WIFI
antenna

TS-ENC797-CP-WIFI

This enclosure includes WIFI Antenna and
UFL to SMA cable.

These 3 enclosures can also be ordered with a DIN clip as TS-ENC797-DIN, TS-ENC797-CP-DIN, and TS-ENC797-CP-WIFI-DIN.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 41/75

7.2.2018 TS-7970 - Technologic Systems Manuals

12.8 FPGA

The Lattice MachXO2 FPGA provides several features used by default on the TS-7970:

= auto TX enable for RS-485 half duplex
= DIO expander

= UART/DIO crossbar

= Clock generator

It is also software reloadable and can be customized for specific purposes. The registers are accessed over 12C using the "tshwctl"
utility in the ts4900-utils (https://github.com/embeddedarm/ts4900-utils) repository. The DIO can be accessed using the sysfs GPIOs
224 to 288 using the "tsgpio" driver. See the #GPIO section for more information on the recommended GPIO access.

iUsage: tshwctl [OPTIONS] ...
iTechnologic Systems i.mx6 FPGA Utility
-m, --addr <address> Sets up the address for a peek/poke

-v, --poke <value> Writes the value to the specified address

-t, --peek Reads from the specified address

-i, --mode <8nl> Used with -a, sets mode like '8nl', '7e2', etc
-X, --baud <speed> Used with -a, sets baud rate for auto485

-a, --autotxen <uart> Enables autotxen for supported CPU UARTs
Uses baud/mode if set or reads the current
configuration of that uart

-c, --dump Prints out the crossbar configuration

-g, --get Print crossbar for use in eval

-s, --set Read environment for crossbar changes

-q, --showall Print all possible FPGA inputs and outputs.

-h, --help This message
gy g g g g L P 4

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 42/75

7.2.2018

Addr Bits

7:2
00 1

0

7:2
01 1

0

7:2
02 1

0

7:2
03 1

0

7:2
04 1

0

7:2
05 1

0

7:2
06 1

0

7:2
07 1

0

7:2
08 1

0

7:2
09 1

0

7:2
10 1

0

7:2
11 1

0

7:2
12 1

0

7:2
13 1

0

7:2
14 1

0

7:3
15 2

1:0
16 7:2

Function
TTYMXC2 RXD Crossbar
Reserved
TTYMXC2 RXD Output Enable
TTYMXC4 RXD Crossbar
Reserved
TTYMXC4 RXD Output Enable
TTYMXC2 RTS Crossbar
TTYMXC2 RTS Data
TTYMXC2 RTS Output Enable
TTYMXC3 RXD Crossbar
Reserved
TTYMXC3 RXD Output Enable
TTYMXC1_CTS Crossbar
Reserved
TTYMXC1 _CTS Output Enable
TTYMXC2 CTS Crossbar
TTYMXC2 CTS Output Data
TTYMXC2 CTS Output Enable
MB_TXD Crossbar
Reserved
MB_TXD Output Enable
MB TX EN 485 Crossbar
Reserved
MB TX EN 485 Output Enable
STC _TXD_485 Crossbar
Reserved
STC TXD_485 Output Enable
STC TX EN 485 Crossbar
Reserved
STC TX EN_485 Output Enable
TXD 232 COM Crossbar
Reserved
TXD 232 COM Output Enable
RTS 232 COM Crossbar
Reserved
RTS 232 COM Output Enable
HDI1_TXD Crossbar
HDI1 TXD Data
HD1 TXD Output Enable
Reserved
BT _EN Data
BT _EN Output Enable
Reserved
WL _EN Data
WL _EN Output Enable
Reserved
BT RTS Input Data
Reserved
BT _CTS Crossbar

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

TS-7970 - Technologic Systems Manuals

43/75

7.2.2018

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33
34
35
36
37

1
0
7:2
1:0
7:2
1:0
7:2
1
0
7:2
1
0
7:2
1
0
7:2
1
0
7:2
1
0
7:2
1
0
7:2
1
0
7:2
1
0
7:2
1
0
7:2
1:0
7:2
1
0
7:2
1
0
7:2
1
0
7:0
7:0
7:0
7:0
7:0
7:0

BT CTS Data

BT _CTS Output Enable

BT RXD Crossbar
Reserved

TTYMXC1 RXD Crossbar
Reserved

HDI1 DIO 1 Crossbar

HDI1 DIO 1 Data

HD1 DIO 1 Output Enable
HD1 DIO 2 Crossbar

HDI1 DIO 2 Data

HD1 DIO 2 Output Enable
HD1 DIO 3 Crossbar

HDI DIO 3 Data

HD1 DIO_3 Output Enable
HDI1 DIO 4 Crossbar

HD1 DIO 4 Data

HDI1 DIO_4 Output Enable
HDI1 DIO_5 Crossbar

HDI1 DIO 5 Data

HD1 DIO 5 Output Enable
HD1 DIO 6 Crossbar

HDI1 DIO_6 Data

HD1 DIO_6 Output Enable
EN_OUT 1 Crossbar

EN OUT 1 Data
EN_OUT 1 Output Enable
EN OUT 2 Crossbar

EN OUT 2 Data
EN_OUT 2 Output Enable
FPGA_IRQ 1 Crossbar
Input Data

Reserved

STC TXD 232 Crossbar
Reserved

Reserved

push_sw reset (1]

Reserved

Reserved

Reboot (on 1) 2]

Reserved

Reserved

Push SW Input Data
Reserved

RS485 CNTO [23:16]
RS485 CNTO [15:8]
RS485 CNTO [7:0]

RS485 CNT1 [23:16]
RS485 CNT1 [15:8]
RS485 CNT1 [7:0]

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

TS-7970 - Technologic Systems Manuals

44/75

7.2.2018

38

39

40

41

42

43

44

45

46

51

53

54

55

56

57

58

59

60

61

>
®

A
S| A

RS485 CNT2 [23:16]

RS485 CNT2 [15:8]

RS485 CNT2 [7:0]

RS485 CNT3 [23:16]

RS485 CNT3 [15:8]

RS485 CNT3 [7:0]
TTYMAXO RXD Crossbar
Reserved

TTYMAXO RXD Output Enable
TTYMAX1 RXD Crossbar
Reserved

TTYMAX1 RXD Output Enable
TTYMAX2 RXD Crossbar
Reserved

TTYMAX2 RXD Output Enable
FPGA Revision

R39 Option Resistor (1 = not present)
R34 Option Resistor (1 = not present)
R36 Option Resistor (1 = not present)
R37 Option Resistor (1 = not present)
TTYMAXO CTS Crossbar
Reserved

TTYMAXO CTS Output Enable
TTYMAX1 CTS Crossbar
Reserved

TTYMAX1 CTS Output Enable
TTYMAX2 CTS Crossbar
Reserved

TTYMAX2 CTS Output Enable
DIO1 and DIO2 input data.

HDI1 _DIO input data

Reserved

LCD D10

CN 99 BOOT_SEL Input Data
HD1 SPI CLK Crossbar
HDI_SPI_CLK Data

HD1 SPI_CLK Output Enable
HD1 SPI _MOSI Crossbar
HDI1 SPI MOSI Data
HDI1 SPI MOSI Output Enable
HDI1_SPI MISO Crossbar
HD1 SPI MISO Data
HDI1_SPI_MISO Output Enable

Reserved

TS-7970 - Technologic Systems Manuals

1 = Always pass through SPI rather than on OFF BD CS# assert only

Reserved

1. 1 If this is set to 1, then when SW1 is pressed a hardware reboot will happen
2. 1 This power cycles all rails rather than a software reboot

12.8.1 FPGA Crossbar

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

45/75

7.2.2018 TS-7970 - Technologic Systems Manuals

The FPGA crossbar allows almost any of the FPGA pins to be rerouted. All the FPGA addresses that have a crossbar mux register can
be written with these output values.

Crossbar Value| Selected Function

0 Do not change

1 BT RTS

2 BT _TXD

3 TTYMXC4 TXD

4 TTYMXC2 TXD

5 TTYMXC2 _RTS

6 TTYMXC1_RTS

7 TTYMXC2 CTS

8 MB_RXD 485

9 STC RXD 485 3V
10 RXD 232 COM

11 CTS 232 COM
12 STC RXD

13 HDI _RXD

14 TTYMXC3 TXD
15 TTYMXC1_TXD
16 TTYMAXO0 TXD
17 TTYMAXO0 TXEN
18 TTYMAXO RTS
19 TTYMAX1 TXD
20 TTYMAX1 TXEN
21 TTYMAX1 RTS
22 TTYMAX2 TXD
23 TTYMAX2 TXEN
24 TTYMAX2 RTS
25 TTYMXC1 _TXEN
26 TTYMXC3 _TXEN
27 CLK 12MHZ

28 CLK 14MHZ

29 FPGA 24MHZ CLK
30 CLK 28MHZ

31 GPIO

32 HD1 DIO 1

33 HD1 DIO 2

34 HD1 DIO 3

35 HD1 DIO 4

36 HDI DIO 5

37 HD1 DIO 6

38 DIO 1 IN

39 DIO 2 IN

40 LCD D10

41 PUSH_SW_CPU
42 HD1_SPI CLK

43 HD1_SPI_MOSI
44 HD1_SPI_MISO

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 46/75

7.2.2018 TS-7970 - Technologic Systems Manuals
For example, we can remap three ttyMAX ports to the HD1 GPIO.

Pin Function
HDI1 _DIO 1 |ttyMAXO txd
HD1 DIO 2 ttyMAXO rxd
HDI1 _DIO 3 |ttyMAXI txd
HD1 DIO 4 ttyMAX1 rxd
HD1 DIO 5 ttyMAX2 txd
HD1 DIO 6 ttyMAX2 rxd

e 1
itshwctl --dump i
L e o o e e o e e e e e e o o o o e o e o e e o o o o o o o o o o o o o o o o o o e e e e o2 2 2 2 2 2 2 22 o o o e o o o o o o o o o o o o o e 4

FPGA Pad (DIR) (VAL) FPGA Output

: MB_TXD (in) (@) TTYMAX1_TXD :
! STC_TXD_485 (in) (@) TTYMAX8_TXD '
| RTS_232_COM (in) (@) TTYMAX2_TXD :
i HD1_DIO_1 (in) (©) GPIO ;
! HD1_DIO_2 (in) (@) GPIO !
: HD1_DIO_3 (in) (@) GPIO :
! HD1_DIO_4 (in) (@) GPIO !
! HD1_DIO 5 (in) (©) GPIO :
i HD1_DIO_6 (in) (©) GPIO ;
! TTYMAX@_RXD (in) (@) STC_RXD_485_3V '
i TTYMAX1_RXD (in) (@) MB_RXD_485 :
i TTYMAX2_RXD (in) (@) CTS_232_COM :

ieval $(tshwctl --get)

lexport HD1_DIO_1=TTYMAX@_TXD
iexport HD1_DIO_3=TTYMAX1_TXD
iexport HD1_DIO_5=TTYMAX2_TXD
lexport TTYMAX@_RXD=HD1_DIO_2
lexport TTYMAX1_RXD=HD1_DIO_4
lexport TTYMAX2_RXD=HD1_DIO_6

i# These Llast 3 aren't required, but this will disable ttyMAX pins on
W their default Llocations. Without this, writes to /dev/ttyMAXe

i# would go to both STC_TXD 485 and to HD1_DIO_1.

iexport MB_TXD=GPIO

iexport STC_TXD_485=GPIO

ilexport RTS_232_COM=GPIO

i# This will read the environment and Look for the PAD names
W for any changes and apply them.
itshwctl --set

12.9 GPIO

The 1.MX6 GPIO are available using the kernel's sysfs. See the kernel's documentation here
(https://www.kernel.org/doc/Documentation/gpio/sysfs.txt) for more detail. This interface provides a set of files and directories for
interacting with GPIO. This allows GPIO to be accessed from any language that can write files. For example to toggle

CN1 89/EIM_A22 the kernel maps this to GPIO 48. See the table below for the full IO listing.

It is possible to use GPIO registers as documented in the CPU reference manual to
control GPIO. If this is needed keep in mind the kernel may attempt to access the same
GPIO banks for various drivers. Be aware of the other IO in the same bank or use a
read/modify/write.

Note:

To interact with this pin, first export it to userspace:

If you receive a permission denied on a pin that means it is claimed by another kernel driver. If it succeeds you will have a
/sys/class/gpio/gpio48/ directory. The relevant files in this directory are:

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 47/75

7.2.2018 TS-7970 - Technologic Systems Manuals

i direction - "out" or "in"
i value - write "1" or "@", or read "1" or "@" if direction is in
i edge - write with "rising", "falling", or "none"

i# Set GPIO 48 high

iecho "out" > /sys/class/gpio/gpio48/direction
iecho "1" > /sys/class/gpio/gpio48/value

i# Set GPIO 48 Low

lecho "0" > /sys/class/gpio/gpio48/value

i# Read the value of GPIO 48
iecho "in" > /sys/class/gpio/gpio48/direction
icat /sys/class/gpio/gpio48/value

As an output, the in can be written to 0 for low (GND), or 1 for high (3.3V). As an input the GPIO will have a 100k pullup. The GPIO
pins off of the .M X6 processor support an absolute maximum of -0.5 to 3.6V. It possible to use any processor GPIO as an interrupt.
This is done by writing the edge value, and using select() or poll() on the value file for changes. See the #Interrupts section for more
details.

The GPIO numbers in the table below are relevant to how the Linux references these numbers. The CPU documentation refers to
bank and IO while Linux flattens this out to one number space.

Pins #224 and above are from the perspective of the FPGA rather than the CPU. For example, toggling the 10 #224 is ttymxc2 rxd
which does not toggle the cpu's uart pin, but the FPGA 10 directed at that pin in the CPU. Many of these UART pins are not set as
GPIO by default, and the FPGA includes its own crossbar. The UART pins will be mapped to cpu or fpga uarts.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 48/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Pad Name [!] GPIO Number Common Functions [2] Location
SD4 DAT3 43 USB HUB Reset# Onboard
DISPO DAT23 145 SEL DC USB# Onboard
EIM Al6 54 EN USB 5V Onboard
EIM D27 91 Green LED Onboard
GPIO 2 2 Red LED Onboard
GPIO 9 9 Yellow LED Onboard
DISPO_DAT4 121 Blue LED Onboard
CSI0_DATA_EN| 148 FPGA IRQ 0 (FPGA UART irq) Onboard
GPIO 4 4 FPGA IRQ 1 (unused) Onboard
DISPO_DAT14 136 JTAG FPGA_TMS Onboard
DISPO_DAT17 139 JTAG_FPGA_TCK Onboard
DISPO_DAT18 140 JTAG_FPGA_TDO Onboard
DISPO DAT22 144 JTAG FPGA TDI Onboard
DISPO DAT20 |142 Gyro IRQ Onboard
EIM LBA 59 GPIO HD2 pin 3
EIM_OE 57 Modbus fault Onboard
EIM_RW 58 SD Boot Jumper Onboard
EIM_A19 51 EN MODBUS 24V# Onboard
DISPO_DATS5 122 EN_MODBUS 3V# Onboard
EIM_D23 87 EN_RTC PWR Onboard
DISPO_DATO 117 EN CAN 1# Onboard
EIM_BCLK 191 EN_CAN 2# Onboard
DISPO_DAT7 124 GPIO HDI1 pin 7
DISPO_DAT9 126 GPIO HD1 pin 21
DISPO DAT10 127 GPIO HDI1 pin 9
DISPO DATI11 133 GPIO HDI1 pin 14
EIM_CSO 55 GPIO HD2 pin 5
EIM A24 132 GPIO HD2 pin 12
EIM_WAIT 128 GPIO HD2 pin 11
EIM_EBI1 61 GPIO HD2 pin 10
EIM_DAO 64 GPIO HD2 pin 2
EIM_DAI 65 GPIO HD2 pin 4
EIM_DA2 66 GPIO HD2 pin 6
EIM_DA3 67 GPIO HD2 pin 8
EIM_DA4 68 GPIO HD2 pin 7
EIM_DAS 69 GPIO HD2 pin 9
EIM DAG6 70 GPIO HD2 pin 13
EIM _DA7 71 GPIO HD2 pin 15
EIM DAS 72 GPIO HD2 pin 16
EIM DAY 73 GPIO HD2 pin 17
EIM_DA10 74 GPIO HD2 pin 14
EIM DAI11 75 GPIO HD2 pin 24
EIM DA12 76 GPIO HD2 pin 21
EIM DA13 77 GPIO HD2 pin 19
EIM_DA14 78 GPIO HD2 pin 20
EIM_DAI5 79 GPIO HD2 pin 18
SD4 DATS 45 TTYMXCI_RTS FPGA Crossbar
SD4 DAT6 46 TTYMXC1_CTS FPGA Crossbar

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 49/75

7.2.2018

TS-7970 - Technologic Systems Manuals

1. 1 The pad name does not often correspond with the functionality of the IO we use, but can be used to reference the pad in the

CPU manual.

2. 1 This does not contain all of the functions possible for a pin, but the common functions as they are used on our off the shelf
basebords. Consult the .MX6 CPU Reference manual, and FPGA crossbar section for a complete list.

12.9.1 FPGA GPIO

The FPGA is used as a GPIO expander, and a crossbar. In most cases the FPGA 10 are usable for low speed 10. The crossbar allows
passing through some spare CPU GPIO which are interruptible.

If any IO are used from the kernel, keep in mind these 10 cannot be called from an
Note: interrupt context. These IO "can sleep”. Instead of gpio_set_value use

gpio_set value cansleep().

Some pins will need to be changed into GPIO before they can be used. For example, to toggle HD1 pin 12 (HD1_TXD):

g g g 4
e H
i root@ts-imx6:~# tshwctl --dump i
i FPGA Pad (DIR) (VAL) FPGA Output :
! TTYMXC2_RXD (in) (@) HD1_RXD !
i TTYMXC4_RXD (in) (@) STC_RXD :
! TTYMXC2_CTS (in) (@) GPIO '
! TTYMXC3_RXD (in) (©) RXD_232_COM :
i TTYMXCL1_CTS (in) (@) BT_RTS :
! TTYMXC2_RTS (in) (1) GPIO :
MB_TXD (in) (@) TTYMAX1_TXD
! MB_TX_EN_485 (in) (@) TTYMAX1_TXEN :
| STC_TXD_485 (in) (©) TTYMAX@_TXD i
| STC_TX_EN_485 (in) (@) TTYMAX@_TXEN :

TXD_232_COM (in) (@) TTYMXC3_TXD :
i RTS_232_COM (in) (@) TTYMAX2_TXD :
' HD1_TXD (in) (@) TTYMXC2_TXD '
: BT_CTS (in) (1) TTYMXC1_RTS i
L e e e e e e e e e e e e e e 4

In this case HD1 TXD is the signal we want to toggle. The HD1 TXD signal is passing through TTYMXC2 TXD. It is possible to
toggle ttymxc2_txd from the CPU as a GPIO, but the CPU IOMUXC would first need to be configured. On the CPU IOMUXC this is
a UART, not a GPIO by default. On the FPGA as well this is configured to pass through the CPU pin, but it can be configured to be a

GPIO:

lexport HD1_TXD=GPIO

itshwetl --set

Now running "tshwctl --dump" will show this HD1_TXD signal is now a GPIO. Refer to the below table to see the FPGA pin to

toggle. In this case, 236.

iecho 236 > /sys/class/gpio/export

iecho high > /sys/class/gpio/gpio236/direction
iecho low > /sys/class/gpio/gpio236/direction

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

50/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Pad Name [!] GPIO Number Default Function Location
TTYMXC2 RXD (224 ttymxc2 rxd HDI pin 12
TTYMXC4 RXD |225 ttymxc4 rxd P1-B pin 16
TTYMXC2 RTS 226 NC NC
TTYMXC3 RXD |227 ttymxc3 rxd COM Header pin 2
TTYMXC1 _CTS |228 ttymxcl cts Onboard (Bluetooth RTS)
TTYMXC2 CTS 229 NC NC
MB_TXD 230 ttyMAX1 txd Modbus RJ45 Data pins 4/5 +/-
MB TX EN 485 231 ttyMAX1 txen Onboard
STC TXD 485 232 ttyMAX0 TXD P1-A Terminal Block pin 2, COM2 Header pin 1
STC TX EN 485|233 ttyMAXO0 TXEN Onboard [
TXD 232 COM 234 ttymxc3 TXD COM2 Header pin 3
RTS 232 COM 235 ttyMAX2 TXD COM2 Header pin 7
HDI TXD 236 ttymxc2 RXD HD1 pin 10
BT EN 237 GPIO Onboard
WL _EN 238 GPIO Onboard
BT RTS 239 ttymxcl CTS Onboard
BT CTS 240 ttymxcl RTS Onboard
BT RXD 241 ttymxcl TXD Onboard
TTYMXC1 RXD (242 ttymxcl TXD Onboard
HDI1 DIO 1 243 GPIO HDI1 pin 8
HDI1 DIO 2 244 GPIO HDI1 pin 6
HDI1 DIO 3 245 GPIO HDI1 pin 4
HDI1 DIO 4 246 GPIO HDI1 pin 2
HDI DIO 5 247 GPIO HDI pin 24
HDI1 DIO 6 248 GPIO HDI1 pin 22
EN OUT 1 249 GPIO Onboard/Terminal Block P1-B pin 5
EN OUT 2 250 GPIO Onboard/Terminal Block P1-B pin 6
STC TXD 232 252 ttymxc4 TXD P1-B Terminal Block pin 7
FPGA Register 253 1 =Reboot on push_sw Register
FPGA Register 254 1 = Reboot Register
TTYMAXO0 RXD |268 ttyMAX0 RXD P1-A Terminal Block pin 3, COM2 Header pin 6
TTYMAX1 RXD 269 ttyMAX1 RXD RJ45 2W-Modbus pin 5
TTYMAX2 RXD 270 ttyMAX2 RXD COM2 Header pin 8
HD1 SPI CLK |282 #SPI, GPIO HDI1 pin 17
HDI1 _SPI MOSI (283 #SPI, GPIO HDI1 pin 20
HDI1_SPI MISO 284 #SPI, GPIO HDI pin 18
1. 1 The pad name rarely corresponds with the functionality of the IO we use. This name can be used to reference the pad in the
CPU manual.
2. 1 This pin is set up to automatically toggle with TX data in the FPGA. You do not need to manually toggle this to
transmit/recieve.
12.10 Interrupts

The .MX6 CPU GPIO are also able to function as interrupts on rising and falling edges. This is accessible from the kernel as well as
userspace. Userspace IRQs are exposed through the sysfs gpio mechanism. This example will trigger on a falling edge for GPIO 48:

iecho "48" > [sys/class/gpio/export
iecho "in" > /sys/class/gpio/gpio48/direction
iecho "falling" > /sys/class/gpio/gpio48/edge

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 51/75

7.2.2018 TS-7970 - Technologic Systems Manuals

f#include <stdio.h>
winclude <stdlib.h>
#include <fentl.h>
#include <sys/select.h>
Winclude <sys/stat.h>
5#include <unistd.h>

5int main(int argc, char **argv)

it

5 char gpio_irq[64];

! int ret, irqfd = 0, i = 0;

| fd_set fds;

: FD_ZERO(&fds);

! int buf;

f (argc < 2) {

1 printf("Usage: %s <gpio number>\n", argv[0]);

: 1

| }

f snprintf(gpio_irq, sizeof(gpio_irq), "/sys/class/gpio/gpio%d/value"”, atoi(argv[1]));
1 irqfd = open(gpio_irq, O_RDONLY, S_IREAD);

: (irgfd == -1) {

i printf("Could not open IRQ %s\n", argv[1]);

! printf("Make sure the GPIO is already exported", argv[1]);

; 1;

: }

i // Read first since there is always an initial status

' ret = read(irqgfd, &buf, sizeof(buf));

5 1 1

! FD_SET(irqfd, &fds);

5 // See 1if the IRQ has any data available to read

! ret = select(irgfd + 1, NULL, NULL, &fds, NULL);

: (FD_ISSET(irgfd, &fds))

5 FD_CLR(irqfd, &fds); //Remove the filedes from set
! printf("IRQ detected %d\n", i);

H fflush(stdout);

i i++;

5 /* The return value includes the actual GPIO register value */
' read(irqgfd, &buf, sizeof(buf));

5 lseek(irqgfd, ©, SEEK_SET);

' }

5 //Sleep, or do any other processing here

' usleep(100000) ;

: }

: e;

i}

L e e e o e e e o e

This example can be run as "./irqtest 48" which will echo every time the pin changes, but will otherwise take no cpu time.

12.11 LEDs

The kernel provides access to control the LEDs using the sysfs:

i# Set Red led on

iecho 1 > /sys/class/leds/red-led/brightness
W# Set Red led off

Eecho @ > /sys/class/leds/red-led/brightness

i# Set Green Led on

techo 1 > /sys/class/leds/green-led/brightness
Set Green led off

Eecho 0 > /sys/class/leds/green-led/brightness

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

52/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Trigger value LED toggles on

none Default, no action

mmc(MicroSD card activity

mmcl eMMC activity

mmc2 WIFI SDIO activity

timer 2hz blink

oneshot Blinks after delay. (]

heartbeat Similar to timer, but varies the period based on system load

backlight Toggles on FB. BLANK

gpio Toggle based on a specified gpio. (21
cpul Blink on CPU core 0 activity
cpul Blink on CPU core 1 activity
cpu2 Blink on CPU core 2 activity
cpu3 Blink on CPU core 3 activity

default-on Only turns on by default. Only useful for device tree.
transient Specify on/off with time to turn off. [3]

flash/torch Toggle on Camera activation. Not currently used.

1. 1 See the Kernel documentation (https://github.com/embeddedarm/linux-3.10.17-imx6/blob/master/Documentation/leds/ledtrig-
oneshot.txt) for more details

2. 1 When this trigger is set, a "gpio" file appears in the same directory which can be used to specify what GPIO to follow when it
blinks

3. 1 See the Kernel documentation (https://github.com/embeddedarm/linux-3.10.17-imx6/blob/master/Documentation/leds/ledtrig-
transient.txt) for more details

12.12 MicroSD Card Interface

The .MX6 SDHCI driver supports MicroSD (0-2GB), MicroSDHC (4-32GB), and MicroSDXC(64GB-2TB). The cards available on
our website on average support up to 16MB/s read, and 22MB/s write using this interface. The linux driver provides access to this
socket at /dev/mmcblk1 as a standard Linux block device.

See chapter 67 of the IMX6 reference manual for more : - — —_—
information on this mmec controller. S

We have performed compatibility testing on the Sandisk MicroSD
cards we provide. We do not suggest switching brands/models
without your own qualification testing. While SD cards
specifications are standardized, in practice cards behave very
differently. We do not recommend ATP or Transcend MicroSD
cards due to known compatibility issues.

Our testing has shown that on average microSD cards will last
between 6-12TB. After this cards can begin to experience
corruption, or stop being recognized by the host pc. This may be
enough storage for many applications to write for years without
problems. For more reliable storage consider using the eMMC.
Our endurance testing showed a write lifetime on average of about This graph shows our SD write endurance test for 40x TS-7553

123TiB. boards. These boards are running a doublestore stress test on 4GB
Sandisk MicroSD cards. A failure is marked on the graph for a card
MicroSD cards should not have power removed during a write or once a single bit of corruption is found.

they will have disk corruption. Keep the filesystem mounted read

only if this is a possibility. It is not always possible for fsck to

recover from the types of failures that will be seen with SD power loss. Consider using the eMMC for storage instead which is far
more resilient to power loss.

12.13 NVRAM

The RTC includes 128 bytes of NVRAM which can be used for custom applications. There is a utility, nvramectl which can be used to
read/write the NVRAM.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 53/75

7.2.2018 TS-7970 - Technologic Systems Manuals
ts4900-utils github (https://github.com/embeddedarm/ts4900-utils/) .

The utility reads/writes a byte at a time, and returns the value in hex.

invr‘amctl --addr 10 --set 0x40
invramctl --addr 10 --get

i# Returns "nvram10=0x40".

% This can also be used with eval
ieval $(nvramctl --addr 10 --get)
lecho $nvramio

i# Returns "ox40"

The NVRAM code can be included in your application by using these two files:

= nvram.c (https://github.com/embeddedarm/ts4900-utils/blob/master/src/nvram.c)
= nvram.h (https://github.com/embeddedarm/ts4900-utils/blob/master/src/nvram.h)

12.14 Onboard SPI Flash

This board includes 8MiB of SPI flash using a Micron N25Q064A13ESE40F. The CPU uses this for the initial boot to load u-boot, as
well as the u-boot environment. In Linux this is accessed with the /dev/mtdblock devices.

Bytes Size Description
0-0x3ff 1KB Unused
0x400-0x ffftf 0.999MiB | U-boot

0x100000-0x101ftf | 8KiB U-boot environment #1
0x102000-0x17fftf |504KiB |Unused
0x180000-0x181ftf |8KiB U-boot environment #2
0x182000-0x L fffff |504KiB |Unused
0x200000-0x700000 5MiB Unused

12.15S RTC

We include the Intersil ISL.12020 RTC onboard. This provides a long RTC battery life, as well as a built in temperature sensor to
provide +- 5ppm across -40 to 85C. This is /dev/rtcO in our images, and is accessed using the standard hwclock
(http://linux.die.net/man/8/hwclock) command.

12.16 USB

12.16.1 USB OTG

This SBC includes support to act as a USB peripheral to another system. Remove the "CON EN" jumper to disable the onboard usb
serial, and connect the P1 header to the CPU's OTG port. This port is strapped to only act as a USB device. Several devices are
compiled into the default kernel. Other devices can be compiled into the kernel by following the section here.

USB Serial

This will create a /dev/ttyGS0. See the kernel documentation for more information:

= USB Gadget Serial documentation (https://www.kernel.org/doc/Documentation/usb/gadget serial.txt)
= Windows CDC-ACM INF file (https://github.com/embeddedarm/linux-3.10.17-imx6/blob/master/Documentation/usb/linux-

cdc-acm.inf)

USB Ethernet

This provides a usb0 network interface. This driver simulates an Ethernet network connection between the host pc and the i.MX6.

= Windows driver inf (https://github.com/embeddedarm/linux-3.10.17-imx6/blob/master/Documentation/usb/linux.inf)

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 54/75

7.2.2018
12.16.2 USB Host

TS-7970 - Technologic Systems Manuals

The 1.MX6 provides 1 USB Host with supporting USB 2.0 (480Mbit/s). The TS-7970 includes a USB Hub expanding this to 4 USB

host ports.

Typically USB is interfaced with by using standard Linux drivers, but low level USB communication is possible using libusb

(http://www.libusb.org/) .

The TS-7970 USB 5V rail can be toggled on/off through a GPIO. This can be used to save power, or to reset USB devices that get

stuck in a bad state.

i# Power disabled

iecho 1 > /sys/class/leds/en-usb-5v/brightness
isleep 2 # let any devices reset

W# Enable power

iecho @ > /sys/class/leds/en-usb-5v/brightness

The USB OTG which can act as a host does not always use the same controllable 5V
Note: supply. Refer to the schematic's EN_USB_5V/USB_5V for more information on this

control.

The TS-7970 also has a USB port on the HD1 header (11 data-, 13 data+). This is used for some off the shelf daughter cards like the
DC767-MT which supports Multitech cellular modems. To use this USB port you must toggle a GPIO which switches a USB mux

onboard. This switches one of the USB hosts from the top port next to the Ethernet connector to HD1.

i# Set USB4 to HD1

iecho 1 > /sys/class/leds/sel_dc_usb/brightness

i# Set USB4 to J1 (default)
iecho © > /sys/class/leds/sel_dc_usb/brightness

12.17 SATA

The .MX6 Quad and Dual include integrated SATA 1I support. This interface has been tested to provide 72MiB/s write, and 75MiB/s
read through block access. In linux this is accessed through the /dev/sda device:

.768036] atal: SATA link up 3.0 Gbps (SStatus 123 SControl 300)

i 1

il 1.785377] atal.ee:
i 1.791716] atal.ee:
i 1.805380] atal.eo:
i[1.810320] scsi

i 1.819459] sd o:
i 1.827427] sd o:
i 1.832812] sd @:
' 1.843621] sda: s
: 1.847381] sd 0:0:

ATA-8: MKNSSDAT30GB-DX, 507ABBF@, max UDMA/133

58626288 sectors, multi 16: LBA48 NCQ (depth 31/32)

configured for UDMA/133

0:0: Direct-Access ATA MKNSSDAT30GB-DX 507A PQ: © ANSI: 5

0: [sda] 58626288 512-byte logical blocks: (30.0 GB/27.9 GiB)

0: [sda] Write Protect is off

0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA

1
0: [sda] Attached SCSI dis

To use the SATA for booting, press the SW1 button on startup and enter the u-boot command prompt. Change the default bootcmd to
instead load from sata by running:

‘env set bootcmd 'run sataboot';

ienv save;

On startup now the SD boot jumper will be ignored, and the board will boot straight to sata.

12.18 Silabs Microcontroller

The onboard silabs microcontroller includes 3 primary functions:

= ADC channels
= Sleep Mode
= USB Console

The USB console passes through the CPU's ttymxc0 port using a CP201x driver. This is present on most Linux distributions. On

Windows this is available with a WHQL signed driver from Silabs.

The Silabs exists at 0x10 on the i2¢ bus 0 using 8-bit address and data. It can be read for up to 32 bytes to get the ADC values, and

Silabs revision. Our example code "tsmicroctl -i" includes reading all the ADCs in millivolts. This also includes a variable for the

revision. For example

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

55/75

7.2.2018 TS-7970 - Technologic Systems Manuals

i # tsmicroctl -i
| VDD_ARM_CAP=1026
! VDD_HIGH_CAP=2603
| VDD_SOC_CAP=1239
| VDD_ARM=1451

| SILAB_P10=0x0

| SILAB_P11=0x@

! SILAB_P12=0x0

| VIN=4779

| V5_A=5189

| V3P1=3230

i DDR_1P5V=1559

! V1P8=1904

| V1P2=1259

! RAM_VREF=778

| V3P3=3522

| SILABREV=1

In u-boot you can use the "tsmicroctl" command with no arguments to read the same values.

The sleep mode is accessible in u-boot with "tsmicroctl <seconds>", and in Linux with "tsmicroctl -s <seconds>". This will power off
everything on the board except the silabs microcontroller. The blue LED will blink while it is in this mode.

The silabs sample all ADC channels in a scale of 0-2.5V. The schematic shows the voltage dividers to bring the higher voltages it
samples into this range.

Silabs Read Registers
Register Description

0 VDD ARM CAP MSB
1 VDD _ARM CAP LSB
2 VDD _HIGH CAP MSB
3 VDD _HIGH CAP LSB
4 VDD_SOC _CAP MSB
5 VDD_SOC_CAP LSB
6 VDD_ARM MSB

7 VDD _ARM LSB

8 SILAB P10 MSB

9 SILAB P10 LSB

10 SILAB P11 MSB

11 SILAB P11 LSB

12 SILAB P12 MSB

13 SILAB P12 LSB

14 VIN MSB

15 VIN LSB

16 V5 A MSB

17 V5 ALSB

18 V3P1 MSB

19 V3P1 LSB

20 DDR _1P5V MSB

21 DDR _1P5V LSB

22 V1P8 MSB

23 V1P8 LSB

24 V1P2 MSB

25 VI1P2 LSB

26 RAM_VREF MSB

27 RAM_VREF LSB

28 V3P3 MSB

29 V3P3 LSB

30 Silabs Revision

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 56/75

7.2.2018 TS-7970 - Technologic Systems Manuals
12.18.1 Silabs Sleep Mode

The TS-7970 implements a very low power sleep mode using the onboard supervisory microcontroller. This allows powering off the
1.MX6 CPU entirely. While in this mode the entire board will use about 26mW.

The board can be woken 3 ways:

= Timer - sleep mode requires specifying an amount of seconds to sleep (up to 16777215).
= SWI1 - Pressing the button on the side of the board.
= PUSH_SW# goes low on HD1. The SW1 signal is brought to the header so connected cards can wake the TS-7970.

The sleep mode can be entered at a low level calling "tshwectl --sleep 60" to sleep for 60 seconds, but this typically should not be
called directly. This would be equivalent to disconnecting power while booted which can cause data loss.

The Yocto, Debian, or Ubuntu distributions use systemd to manage shutdown. When systemd shuts down it will call all executables in
/lib/systemd/system-shutdown/. Create a script silabs-sleep in this directory with these contents:

i#1/bin/bash

itsmicroctl --sleep 60

Now the board will sleep immediately following a shutdown. It is safe during the sleep mode to disconnect power.

12.19 SP1

The CPU has 1 SPI controller which is accessible offboard through either specific kernel drivers, or userspace using the /dev/spidev
interface. On the TS-7970 these are exposed as /dev/spidevl.1 (FPGA) and /dev/spidevl.2 (HD1) in userspace.

= Linux kernel spidev documentation (https://github.com/embeddedarm/linux-3.10.17-
imx6/blob/master/Documentation/spi/spidev)
= spidev example code (https://github.com/embeddedarm/linux-3.10.17-imx6/blob/master/Documentation/spi/spidev_test.c)

The /dev/spidevX.Y are created where X is the controller and Y is the chip select used. See the compiling the kernel section to get a
build environment up. Any GPIO can be used as another SPI chip select by modifying the device tree. For example
arch/arm/boot/dts/imx6qdl-ts7970.dtsi:

i&ecspiz {
H fsl,spi-num-chipselects = <3>;

cs-gpios = <&gpio5 31 0>, <&gpio7 12 0>, <&gpio5 18 0>;
pinctrl-names = "default";

pinctrl-@ = <&pinctrl_ecspi2>;

status = "okay";

seriall: max3100-1@0 {
compatible = "max3100-ts";
reg = <0>;
interrupt-parent = <&gpiol>;
interrupts = <4 2>;
spi-max-frequency = <1000000>;
loopback = <@>;
crystal = <1>;
poll-time = <100>;
fifo-size = <16>;

¥
spidevfpga: spi@l {

compatible = "spidev";

reg = <1>;

spi-max-frequency = <1000000>;
¥
spidevhdl: spi@2 {

compatible = "spidev";

reg = <2>;

spi-max-frequency = <1000000>;
¥

This bus is shared with the onboard fpga uvarts (/dev/ttyMAX*). The spidevipga node is intended for customized FPGA
communication. The HD1 node is for general use.

12.20 TWI

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 57175

7.2.2018 TS-7970 - Technologic Systems Manuals
The 1.MX6 supports standard 12C at 100khz, or using fast mode for 400khz operation. The CPU has 2 12C buses used on the TS-7970

/dev/i2¢c-0 is internal to the board and connects to the RTC and FPGA.

Address Device
0x10 #Silabs Microcontroller
0x28-0x2f | #FPGA
0x57 #NVRAM
0x6b Onboard PCle Clock Generator
0x6f #RTC

The second 12C bus (/dev/i2c-1) is brought out on HD3 pin 15 (SCL) and HD3 pin 16 (SDA). This bus has no onboard devices.

It is also possible to request the kernel to bitbang additional I12C buses as needed. See
an example here (https://github.com/embeddedarm/linux-3.10.17-
imx6/blob/619e6b197479243e9d7b7f6b34ce0ae85581f1fd/arch/arm/boot/dts/imx6qdl-
ts4900-2.dtsi#L196) .

Note:

The kernel makes the I12C available at /dev/i2¢c-#. You can use the i2c-tools (i2cdetect, i2cgetm, i2cset), or you can write your own
client (https://github.com/embeddedarm/linux-3.10.17-
imx6/blob/619¢6bf97479243¢9d7b7f6b34ce0ae85581f1fd/Documentation/i2¢/dev-interface) .

12.21 Watchdog

The kernel provides an interface to the watchdog driver at /dev/watchdog. Refer to the kernel documentation for more information:

= watchdog-api.txt (https://github.com/embeddedarm/linux-3.10.17-imx6/blob/master/Documentation/watchdog/watchdog-
api.txt)

= watchdog-simple.c (https://github.com/embeddedarm/linux-3.10.17-imx6/blob/master/Documentation/watchdog/src/watchdog-
simple.c)

12.22 WIFI

This board includes a TiWi-BLE SDIO module that uses the Texas Instruments WL1271L Transceiver. Linux provides support for
this using the wl12xx driver. See the LSR site (http://www.lsr.com/embedded-wireless-modules/wifi-plus-bluetooth-module/tiwi-ble)
for detailed product information.

Summary Features:

= [EEE 802.11 b/g/n

2.4GHz

Linux drivers include support for client and AP mode
Industrial temp, -40 to 85C
Certifications

FCC Bluetooth® Grant
FCC WLAN Grant

IC

CE

SAR Testing

SAR Testing EU

nn

Linux uses the "wireless-tools", "wpa-supplicant", and "hostapd" packages to support most of the functionality in this module. Refer
to the distribution support for #Yocto, #Debian, or #Android for more information.

13 External Interfaces

13.1 Audio

The TS-7970 includes two 3.5mm jacks. The top port is a mono microphone input, and the bottom port is a headphone port with left
and right channels. Use "alsamixer" or "amixer" to adjust the volume.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 58/75

7.2.2018 TS-7970 - Technologic Systems Manuals

In Linux select between the HDMI and 3.5mm ports with an alsa variable. By default all audio comes out of the sgtl5000 for the
3.5mm ports.

i# List the sound cards
laplay -1

iexport ALSA_CARD=imxhdmisoc
iespeak "this is playing from the HDMI monitor"

iexport ALSA_CARD=imx6qts7970sgtl
iespeak "this is playing from the onboard sgtl5000"

13.2 COM2 Header

The COM2 header is a 2x5 0.1" pitch header with RS485, CAN, and RS232.

Pin # Description
STC_485+ (/dev/ttyMAXO0)
RS232 RXD (/dev/ttymxc3)
RS232 TXD (/dev/ttymxc3)
CAN_1 H (can0 interface)
GND

STC_485- (/dev/ttyMAXO0)
RS232 TXD (/dev/ttyMAX?2)
RS232 RXD (/dev/ttyMAX2)
CAN_1 L (can0 interface)
NC

5 ——— =10

O [0 I N D KW~

—
(=

13.3 Ethernet

The TS-7970 includes two 10/100/1000 Ethernet ports. The port with the larger connector uses the FEC MAC from the CPU with a
Marvell PHY. The other smaller optional port is a PCle Intel 1210 chipset.

Under Linux the CPU ethernet is typically eth0, and depending on the distribution the second ethernet is either ethl or enp1s0.

The CPU and 1210 both receive unique sequential mac addresses. These are pulled from the Technologic Systems OUI "00:D0:69".
Both chipsets support downshifting if some of the twisted pairs are missing connection.

On both Ethernet ports the right LED indicates speed. It is on for gigabit, and off for 10/100. The left LED will blink on activity.

See the #Debian_Networking for configuring the network on the default distribution.

13.4 HDMI

The TS-7970 includes an HDMI 1.4 port which supports EDID for automatically configuring the video modes on your monitor, and
HDMI audio. In Linux this will be /dev/fb0. The HDMI is capable of outputting up to 1080p60.

Under either distribution the mode will default to the largest and highest refresh rate compatible with both the monitor and the . MX6.
You can override this in yocto with xrandr, or under debian/ubuntu/yocto with a kernel cmdline change. Hold SW1 when power is
applied and the board will stop at u-boot. Run these commands to override the EDID settings and use 1024x768M@60.

ienv set cmdline_append "console=ttymxc@,115200 rootwait ro init=/sbin/init video=mxcfb@:dev=hdmi,1024x768M@60,if=RGB24"
lenv save

HDMI to VGA/DVI-A adapters are possible to use with the TS-7970, but the port protection chip strictly follows the HDMI standard.
Some adapters are known to violate the standard and try to pull too much power off of the HDMI port. For an adapter to work it
should accept a separate power input such as a microUSB port. The TS-7970 can still power the adapter through USB, but the HDMI
header should not be used for sourcing current.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 59/75

7.2.2018

13.4.1 Rotate the video output

TS-7970 - Technologic Systems Manuals

Under Yocto you can use xrandr to rotate the screen at any time:

lexport DISPLAY=:0

xrandr --rotate left
ixrandr --rotate right
xrandr --rotate normal
Exrandr --rotate inverted

|
ESection "Device"

Identifier "fbdev display"
: Driver :
H Option "Rotate" "CCW" H
iEndSection :
L e e e e e e o oo e e e e o e e 4

After the display is rotated you will also need to rotate a touchscreen if this is being used. This example matches the CCW rotation,

but swapaxes or the invertx/y options will need to be adjusted for other rotations.

ESection "InputClass"”
H Identifier "axis inversion"
MatchIsTouchscreen "true"

swap x/y axes on the device. i.e. rotate by 90 degrees

Option "SwapAxes" "on"
Invert the respective axis.
Option "Invertx" "on"
Option "InvertY" "off"

iEndSection

13.5 HD1

HD1 is a 2x12 0.10" pitch header including DIO, USB, SPI, an IRQ, 3.3V, and 5V. All GPIO are 3.3V tolerant unless otherwise

specified.

e

24523

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

Pin # GPIO Number

O [0 I O D K| W N~

—_ = = = =
AW iD= O

N/A
246
N/A
245
N/A
244
124
243
127
236
N/A
224
N/A
133

Description
NC
HD1 DIO 4
GND
HD1 DIO 3
GND
HD1 DIO 2
DISPO_DAT7
HD1 DIO 1
DISPO_DAT10
ttymxc2 RXD
USB host data-
ttymxc2 TXD
USB host data+
DISPO_DAT11

60/75

7.2.2018
15
16
17
18
19
20
21
22
23
24

13.6 HD2

HD2 is a 0.10" pitch header.

Pin #

O (0| I N D KW~

=

P =
NN N RN N = | = | | | | |
AW NN = OO I NN R WD = O

13.7 HD3

HD3 is a 2x8 0.10" pitch header including LVDS, 12C, 3.3V and 5V which can be used to connect up a third party display.

Pin #

TS-7970 - Technologic Systems Manuals

N/A 5V

N/A 5V

282 SPI 2 CLK

284 SPI 2 MISO

146 HD1 SPI CS#

283 SPI 2 MOSI

126 HDI1 IRQ

248 HD1 DIO 6

N/A 3.3V

247 HD1 DIO 5
Description

GND

EIM_DAO (GPIO #64)
EIM_LBA (GPIO #59)
EIM_DALI (GPIO #65)
EIM_CS0 (GPIO #55)
EIM_DA2 (GPIO #66)
EIM_DA4 (GPIO #68)
EIM_DA3 (GPIO #67)
EIM_DAS5 (GPIO #69)
EIM_EBI (GPIO #61)

EIM_WAIT (GPIO #128)

EIM A24 (GPIO #132)
EIM_DAG6 (GPIO #70)
EIM_DA10 (GPIO #74)
EIM_DA7 (GPIO #71)
EIM_DAS (GPIO #72)
EIM_DAS9 (GPIO #73)
EIM_DAI15 (GPIO #79)
EIM_DAI13 (GPIO #77)
EIM_DA14 (GPIO #78)
EIM_DAI12 (GPIO #76)
EIM_RW (GPIO #58)
3.3V supply

EIM DA11 (GPIO #75)

Description

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

61/75

7.2.2018 TS-7970 - Technologic Systems Manuals
LVDSO0 TX1 N
LVDSO TX1 P
3.3V supply
LVDSO0 TX0 N
LVDS0 TX0 P
5V Supply
LVDSO0 CLK N
LVDSO CLK P
GND

LVDSO TX2 N
LVDSO TX2 P
GND

LVDSO0 TX3 N
LVDSO TX3 P
12C 1 CLK

12C 1 DAT

16—+ %15

2= =1

O |0 I O DN A=~ W N~

—_— = = | | |
AN |k~ WD~ O

13.8 Mini Card Connector

The TS-7970 includes a mini card header which includes USB and power like a mini pcie header. It does not include a PCle bus.
Many peripherals do not actually need the PCle bus and instead use the USB host which is present on this header.

This port also supports mSATA which can be used for higher capacity drives.

Note: SATA is not available on the .MX6 solo or duallite processors.

13.9 Push Button
The push switch is accessed by reading FPGA registers:
itshwctl -addr 31 --peek i

With no press bit 2 will be set so it will return "addr31=0x4". If there is a press it will be cleared, so "addr31=0x0".

This pin is sampled in u-boot to detect if it should stop in u-boot and look for usb updates. If this interferes with your intended usage
you can boot to u-boot and disable this by running:

ienv delete preboot;
ienv set bootdelay 1;
lenv save;

After this change u-boot will wait 1 second on every boot for the user to press ctrl+c to break into u-boot on startup.

13.10 RJ45 2W-Modbus

The 2W MODBUS ports both follow a standard pinout:

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 62/75

7.2.2018 TS-7970 - Technologic Systems Manuals

The RS485 port on pins 4 and 5 is accessed with /dev/ttyMAX1.

The MODBUS_ FAULT signal (gpio 57) is used to determine if there is a dead-short on the MODBUS POWER pins. This enables
the developer to detect a line problem before turning potentially damaging power onto the line. The method of checking this is to set

en_modbus_3v3, then read modbus_fault. If modbus_fault is high, then there is a problem with the cabling and en_modbus_24v
should not be asserted.

i# en_24v 51

W oen_3v 122

mb_fault 57

techo 51 > /sys/class/gpio/export
iecho 122 > /sys/class/gpio/export
Eecho 57 > /sys/class/gpio/export

i# test Line with 3.3v

lecho "out" > /sys/class/gpio/gpio51/direction

5echo 0 > /sys/class/gpio/gpio51/value # en_mb_3v3 is active Low.
E# Read mb_fault

Eecho "in" > /sys/class/gpio/gpio57/direction

icat /sys/class/gpio/gpio57/value

5# If returns 1, do not continue.

5# Switch 3V off pins 6 and 7:
Eecho 1 > /sys/class/gpio/gpiol22/balue

E#Switch VIN to pins 6 and 7:
Eecho high > /sys/class/gpio/gpio51/direction

13.11 Terminal Blocks

The TS-7970 includes two removable terminal blocks (OSTTJ0811030) for power, UARTs, CAN, and other general purpose I1O.

123456738
P1-A P1-B
Pin # Description Pin # Description
1 Ground 1 Ground
2 STC_ 485+ (/dev/ttyMAXO0) 2 AD P10 (4-20mA analog input)
3 STC 485- (/dev/ttyMAXO0) 3 AD P11 (4-20mA analog input)

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 63/75

7.2.2018 TS-7970 - Technologic Systems Manuals
4 STC CAN 2 H (canl interface) AD P12 (4-20mA analog input)
5 STC CAN 2 L (canl interface) DIO 1 (30VDC 10)
6 Power Input (8-28VDC) DIO 2 (30VDC IO)
7 Power Input (5VDC) RS-232 STC TXD (/dev/ttymxc4)
8 Ground [RS-232 STC RXD (/dev/ttymxc4)

0N N n b

1. 1 This ground should be used for the power supply since it includes a ferrite bead to help suppress noise.

The DIO 1 and DIO_2 IO can be outputs, or inputs. As inputs the digital threshold is 1.2V. To guarantee low it must be < 0.5V, or for
high > 2.0V. When the 10 is low the external device needs to sink up to 3.5mA. When the 10 is high the external device needs to
source 10 uA max. There is an internal 1.5k pullup to 5V that will bias the input high. As outputs these IO can sink up to S00mA.

EN DIO 1 and EN DIO 2 outputs are controlled through FPGA DIO 249 and 250 respectively. See the #GPIO section for more
information. If these pins are specified as low or in, then they are readable on FPGA reg 56 bits 7:6.

DIO_1 and DIO 2 are accessed through FPGA registers.

itshwctl --addr 56 --peek

E# read "addr56" into bash variable
teval $(tshwctl --addr 56 --peek)

i# Read bit 7 for DIOI
5echo $(($addr56 >> 7))

i# Read bit 6 for DIO2
iecho $((($addr56 >> 6) & @x1))

13.12 USB Device

The USB type B device port is connected to the onboard Silabs for USB to serial console, or to the CPU's #USB OTG. The USB
functionality is picked from the "CON EN" jumper.

Previous to REV C TS-7970, the USB device port can prevent the CPU from booting
Note: upif "CON_EN" is removed, and USB is plugged in before CPU power is connected.
As a workaround on earlier revs you can cut the red wire from your USB cable.

13.13 USB Hosts

The TS-7970 includes 4x USB 2.0 ports. The top port on the USB Type A connector near the Ethernet connectors is brought through
a MUX chip. This USB port can be toggled to switch to the Mini-PCIE connector for use with a cell modem or other peripheral.

14 Specifications

14.1 Power Specifications

The TS-7970 includes 2 methods for powering the board. There is a 5V input, and a 8-28V input. Only one of these should be
provided to the board.

Input | Min voltage Max voltage
5V input 4.75 5.25
8-28V Input |8.00 28.00

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 64/75

7.2.2018 TS-7970 - Technologic Systems Manuals

14.2 Power Consumption

The 1.MX6 power consumption can vary a lot depending on the build and activity of the board. Most of the power savings happens
automatically when the CPU and GPU are idle. It is also possible to disable the Ethernet PHY for extra savings.

i# Put ETH PHY in reset

iecho 116 > /sys/class/gpio/export

iecho high > /sys/class/gpio/gpioll6/direction
W Put USB HUB 1in reset

iecho 43 > [/sys/class/gpio/export

iecho low > /sys/class/gpio/gpio43/direction

i# Lower backlight to 50%
iecho 4 > [/sys/class/backlight/backlight_local_lcd/brightness

i# Disable backlight
iecho 0 > /sys/class/backlight/backlight_local_lcd/brightness

Ethernet is not connected unless otherwise specified. Serial is disconnected during the measurement. The CPU test is 5x processes of
"openssl speed". The GPU test is Qt5CinematicExperience in the Yocto image.

These tests are performed powering the board through 5V.

TS-7970 solo without WIFI or 1210

Test Max Watts Average Watts
CPU 100% + GPU loaded (LCD 100%) + 10 + Ethernet + HDMI |4.50 (0.90 A) 3.40 (0.68 A)
CPU 100% 2.80(0.56 A) [2.35(0.47 A)
CPU Idle + HDMI 2.75(0.55A) [2.05(0.41 A)
CPU Idle + CPU Ethernet 2.75(0.55A) |2.20(0.44 A)
CPU Idle 2.50 (0.50 A) |1.95(0.39 A)
CPU Idle USB HUB off 2.75(0.55A) |1.95(0.39 A)
CPU Idle USB HUB off, Ethernet PHY in reset 2.15(0.43 A) |1.60(0.32 A)
Using onboard uC to sleep CPU 0.025 (125 mA) 0.015 (3 mA)
TS-7970 quad core with WIFI and 1210
Test Max Watts Average Watts

CPU 100% + GPU loaded (LCD 100%) + 10 + Ethernet + HDMI | 10.80 (2.16 A) |7.75(1.55 A)
CPU 100% 6.15(1.23 A) |5.40(1.08 A)
CPU Idle + HDMI 4.55(0.91 A) |2.90(0.58 A)
CPU Idle + WIFI on wpa2 running iperf 6.85(1.37A) 3.95(0.79 a)

CPU Idle + CPU Ethernet 5.00 (1.00 A) |3.10(0.62 A)
CPU Idle + PClIe Ethernet 3.60 (0.72 A) |2.85(0.57 A)
CPU Idle 4.85(0.97 A) |2.80(0.56 A)
CPU Idle USB HUB off 3.50 (0.70 A) |2.75(0.55 A)
CPU Idle USB HUB off, Ethernet PHY in reset 3.30(0.66 A) [2.40(0.48 A)
Using onboard uC to sleep CPU 0.025 (125 mA)|0.015 3 mA)

14.3 Temperature Specifications

The 1.MX6 CPUs we provide off the shelf are either a solo industrial, or quad core extended temperature. The TS-7970 is designed
using industrial components that will support -40C to 85C operation, but the CPU is rated to a max junction temperature rather than
an ambient temperature. We expect the solo to work to 80C ambient while idle with a heatsink and open air circulation. To reach
higher temperatures with this or other variants of this CPU some custom passive or active cooling may be required.

Model Number Operating Min Cooling Temp [!! Passive Temp [2]| Critical/Max Junction Temp [*]
TS-7970-*S8S* |-40C 75C 85C 105C
TS-7970-*Q10S* |-20C 75C 85C 100C

1. 1 CPU stops all throttling below this temperature
2. 1 CPU begins throttling until the cooling temperature
3. 1 CPU Max temperature. Linux will shut down to cool in u-boot at this temperature.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 65/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Our test data can be used to estimate the temperature rise of the CPU over the ambient temperature. These are tested without an
enclosure in open air. The temp ranges show the CPU at idle at the low end, to a very high system load at the high end.

Configuration Temp rise over ambient
Solo No Heatsink 21-27C
Solo with HS-50x53x13 |18-20C
Quad No Heatsink 16-50C

Quad with HS-50x53x13|10-23C
For custom builds these are also exposed in /sys/:

i# Passive :
icat /sys/devices/virtual/thermal/thermal_zone®/trip_point_0_temp !
W Critical i
icat /sys/devices/virtual/thermal/thermal_zone®/trip_point_1_temp i

When the CPU heats up past the cooling temp on a first boot, it will take no action. Heating up past the passive temperature the kernel
will cool down the CPU by reducing clocks. This will show a kernel message:

'T—'.“

-
Ul
o
IS
%
N
Q
v}
w

=
(%)

<
0
p
o
3
e
wn
.
o
o
>
o
+
@
el
c
w
o
=
B
—
—
=
S
>
2
©
+
<
~
)
IS
a
=
[}
a
~

T T T T T T T T T a
i[394.082161] Hot alarm is canceled. GPU3D clock will return to 64/64 ;
L oo e e e e mm e e e e e mm e e e e eemmmm e e e e e emmmmmmeemm e emenm e 4

If it continues heating to the critical temperature it will overheat and reboot. Booting back up u-boot will block the boot until the
temperature has been reduced to the Cooling Temp+5C. This will be shown on boot with:

iU—Boot 2015.04-07857-g486fa69 (Jun @3 2016 - 12:04:30)
ECPU: Freescale i.MX6SOLO revl.1 at 792 MHz

ECPU Temperature is 105 C, too hot to boot, waiting...
ECPU Temperature is 102 C, too hot to boot, waiting...
ICPU Temperature is 99 C, too hot to boot, waiting...
ECPU Temperature is 90 C, too hot to boot, waiting...
iCPU Temperature is 86 C, too hot to boot, waiting...
ECPU Temperature is 84 C, too hot to boot, waiting...
ECPU Temperature is 80 C, too hot to boot, waiting...
\CPU Temperature is 80 C, too hot to boot, waiting...
ECPU Temperature is 80 C, too hot to boot, waiting...
iCPU: Temperature 78 C

iReset cause: WDOG

iBoard: TS-7970

These temperature tests show the TS-7970 with/without both the heatsink and enclosure. The HS-15x15x%5 test data is provided as an
example of a smaller heatsink, but this heatsink is not recommended for the TS-7970.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 66/75

7.2.2018 TS-7970 - Technologic Systems Manuals

TS-T970 Ternp Test

A3 boards in open o weh no encioesure

100

o/
m
— 5 NG Mpad T
' %
P =
%
]
]
0
s
(-]
o m = L e koo] A0 pLon)
My
TS TOT0 Teumgs Teest
Al boseds in enclodue
100
Lot
Eal
. S iy 2
[~ — e ety i 1 E B
—) HE-SORSEN1T
L S —— QUi WD HS L5015
g o [T
O et with 165 St 18
L
E
2

14.4 10 Specifications

The GPIO external to the board are all nominally 3.3V, but will vary depending on if they are CPU/FPGA pins.

The CPU pins can be adjusted in software and will have initial values in the device tree. This lets you adjust the drive strength, and
pull strength of the 10. See the device tree for your kernel for further details on a specific 10.

The FPGA 10 cannot be adjusted further in software.

10 Typical Range Absolute Range Logic Low Logic high |Drive strength
External CPU GPIO |0-3.3V -0.5Vto 3.3V Rail + 0.3V 0.3 * 3.3V Rail | 0.7 * 3.3V Rail | 27.5mA
External FPGA GP1O 0.3.3V -0.5-3.75V 0.8 2.0 12mA

Refer to the MachXO Family Datasheet for more detail on the FPGA I0O. Refer to the CPU quad or solo datasheet for further details
on the CPU IO.

14.5 Rail Specifications

The TS-7970 generates all rails from either the 8-28VDC input, or the 5V input. This table does not document every rail. This will
only cover those that can provide power to an external header for use in an application.

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 67/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Direct 5V input will bypass our regulator, but the absolute max a supply can provide 5A to the board.

Rail Current Available Location
3.3V 200mA [!] HD1 pin 23, HD2 pin 23, mPCle, HD3 pin 3
5V |Quad core 2A, Solo 3A [21 HD1 pins 15/16, HD3 pin 6, USB, mPCle

1. 1 Contact us if you need more on this rail
2. 1 These limitations are only relevant if 8-28V is supplied into the board.

15 Revisions and Changes

15.1 TS-7970 PCB Revisions

Revision

A .

Changes

Initial Release

Changed U17 to support the MPU-9250 9 axis accelerometer

Changes TVS1 touse 4.7V_A

Fix 1210 ethernet LED polarity

Use 153-ball eMMC to support bigger eMMCs on custom builds

Added PU from 5V_A to SW_5V. This prevents a negative leakage on the the SW_5V rail. If the rail has a
negative voltage it will otherwise not switch on.

CPU pin U4 tied to ground. Used to detect REV B boards.

Not released

Changed PHY to Marvell 88E1512 due to published Microchip errata #9-10 which affects link reliability with
some link partners.

This change should be transparent in Linux from older kernels, but if link
problems are seen from older images make sure the Marvell PHY driver is

Note: | |actually disabled as it does not configure this PHY correctly. The genphy

driver will communicate correctly with this PHY. Earlier shipping images had
this enabled, but current images keep this driver disabled

Changed to a larger Ethernet Magjack with separate centertaps as required by the PHY manufacturer.

CPU pin C13 tied to ground. Used to detect REV D boards.

Added two lane MIPI connector (CN1)

Changed to smaller battery holder

Pull USB 5V _DETECT on silabs low when CON_EN jumper is off. This fixes the bug on previous revisions
which would cause the board to fail to boot when CON_EN is off and USB is connected on the P2 port before the
TS-7970 is powered on.

Added PUSH_SW# to HD1 which allows a pin to wake the board out of sleep.

Changed pin 28 to Enable 2.5V REF to reduce power in silabs sleep mode

Improvements for our internal production

Minor changes for internal production.
H6 biased low to detect new rev

15.2 U-Boot Changelog

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

68/75

7.2.2018

Jun-17-2015
(ftp://ftp.embeddedarm.com/ts-
arm-sbc/ts-7970-linux/u-boot/)

Jul-27-2015
(ftp://ftp.embeddedarm.com/ts-
arm-sbc/ts-7970-linux/u-boot/)

Oct-07-2015
(ftp://ftp.embeddedarm.com/ts-
arm-sbc/ts-7970-linux/u-boot/)

May-09-2016
(ftp://ftp.embeddedarm.com/ts-
arm-sbc/ts-7970-linux/u-boot/)

May-27-2016
(ftp://ftp.embeddedarm.com/ts-

TS-7970 - Technologic Systems Manuals

Added TS-7970 support

Added fix for PCle hang in Linux. Some of the GPR1 regs were not being reset after a
reboot. U-boot will now reset these before going into Linux. This hang was not present on
all CPUs, usually solo, and only if PCle is enabled in the kernel.

TS-7970 now has a POR on every reboot
TS-7970 can reload the FPGA from a /boot/ts7970.vme file
PUSH_SW is now read through i2c to free up FPGA IRQ 1

Updated to imx_v2015.04 3.14.52 1.1.0_ga branch

Updated DDR config to latest NXP recommendations

Includes new thermal driver. If the CPU has overheated and rebooted it will wait in u-boot
until the system cools down to the temperature specified in the thermal fuses. These are
adjustable one time in software.

Disabled NFS umountall

Added tsmicroctl command to read adc values, or start the sleep mode for the board.
Requires a silabs from May 27th 2016 or later to include the sleep mode.

Added FPGA RESETH# through a signal rather than a FPGA POR. Requires FPGA REV 5
for FPGA reset to work correctly.

arm-sbc/ts-7970-linux/u-boot/)

Jun-03-2016
(ftp://ftp.embeddedarm.com/ts-
arm-sbc/ts-7970-linux/u-boot/)

Jan-11-2017
(ftp://ftp.embeddedarm.com/ts-
arm-sbc/ts-7970-linux/u-boot/)

Feb-17-2017
(ftp://ftp.embeddedarm.com/ts-
arm-sbc/ts-7970-linux/u-boot/)

Mar-27-2017
(ftp://ftp.embeddedarm.com/ts-
arm-sbc/ts-7970-linux/u-boot/)

15.3 FPGA Changelog

Check the FPGA rev with:

= Added suggested fixes for Micrel PHY errata.

Added FPGA and Silabs revision to startup output.

Added REV D support
Added Marvell PHY support
Allow solo to boot at 85C instead of 80C, quad is still 80C.

Added check for 64bit ext4 filesystem.

= Changed string to indicate REV D/E for new boards.

Added 12C recovery improvements for fixing stuck bus

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

69/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Rev Changes
0 = [nitial Release
1 = Switched max3100 to use FPGA IRQ 1 to leave FPGA IRQ 0 to the silabs.

= Corrected CTS/RTS polarity on MAX3100
2 = Corrected flipped CPU UART CTS/RTS for bluetooth
= Corrected HD1 SPI bus

3 = Disabled pulldown on HD1 SPI CS.
4 » Fixed the FPGA ttyMAX* uarts

= The signal FPGA IRQ 0 is now FPGA RESET which needs to be pulsed on reset by u-boot. This is implemented in
5 the May-27-2016 release.

= Register 61, bit 1 is now used to force SPI at all times on the HD1 SPI pins rather than just on chip select assert. This
should allow any GPIO to be used as chip selects.

6 = Disables USB HUB 24mhz while in reset
7 = Includes support for REV D pin changes.

Using the u-boot from Oct-07-2015 or later you can reload the FPGA during startup for custom FPGAs. During startup you will see
u-boot reload this file:

iBytes transferred = 56341 (dc15 hex)

EVME file checked: starting downloading to FPGA
Diamond Deployment Tool 3.5

ICREATION DATE: Wed Oct 07 11:38:24 2015

iDownloading FPGA 53248/56341 completed
EFPGA downloaded successfully

15.4 Silabs Changelog

Revision Changes

0 = Initial Release

= Added Sleep mode

1 = Blinks blue LED in low power modes. Sleep mode does this, as well as USB device connected with no power on
the main VIN.

2 = Added support for REV D boards. Earlier boards will continue to use REV 1 only.

3 = Fixed Silabs not responding on 12C after sleep mode is used.

15.5 Software Images

15.5.1 Yocto Changelog

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 70/75

7.2.2018

Quad/Dual Image

ts-x11-image-ts4900-quad-
20140905235640.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dora/ts-
x11-image-ts4900-quad-
20140905235640.rootfs.tar.bz2)

ts-x11-image-ts4900-quad-
20141119190447 .rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dora/ts-
x11-image-ts4900-quad-
20141119190447 rootfs.tar.bz2)

ts-x11-image-ts4900-quad-
20141224171440.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dora/ts-
x11-image-ts4900-quad-
20141224171440.rootfs.tar.bz2)

ts-x11-image-ts4900-quad-
20150331224909.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dizzy/ts-
x11-image-ts4900-quad-
20150331224909.rootfs.tar.bz2)

ts-x11-image-ts4900-quad-
20150527173205.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dizzy/ts-
x11-image-ts4900-quad-
20150527173205.rootfs.tar.bz2)

ts-x11-image-ts4900-quad-
20150620060219.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dizzy/ts-
x11-image-ts4900-quad-
20150620060219.rootfs.tar.bz2)

TS-7970 - Technologic Systems Manuals

Solo/Duallite Image

ts-x11-image-ts4900-solo-
20140908160116.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dora/ts-
x11-image-ts4900-solo-
20140908160116.rootfs.tar.bz2)

ts-x11-image-ts4900-solo-
20141119204157.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dora/ts-
x11-image-ts4900-solo-
20141119204157.rootfs.tar.bz2)

ts-x11-image-ts4900-solo-
20141224175107.rootfs.tar.bz2
(ftp:/ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dora/ts-
x11-image-ts4900-solo-
20141224175107.rootfs.tar.bz2)

ts-x11-image-ts4900-solo-
20150401003538.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dizzy/ts-
x11-image-ts4900-solo-
20150401003538.rootfs.tar.bz2)

ts-x11-image-ts4900-solo-
20150528210615.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dizzy/ts-
x11-image-ts4900-solo-
20150528210615.rootfs.tar.bz2)

ts-x11-image-ts4900-solo-
20150622150127.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-
socket-macrocontrollers/ts-4900-
linux/distributions/yocto/dizzy/ts-
x11-image-ts4900-solo-
20150622150127.rootfs.tar.bz2)

ts-x11-image-tsimx6-20150821190815.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/yocto/fido/ts-x11-image-tsimx6-

20150821190815.rootfs.tar.bz2)

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

Changes

Initial Release

Systemd default

Added /ust/lib/openssh/sftp-server (Fixes
QtCreator/Eclipse deploy)

Added QtQuick

Added Sqlite to QT

Added early TS-7970 support.

Updated kernel with significant fixes, see github
(https://github.com/embeddedarm/linux-3.10.17-
imx6/commits/master) for more information.

Updated Kernel
» Fixed ISL RTC errors hardware builds that omit
the RTC
» Fixed I2C bus for 8390 ADC
= Added small pop fix for sgtl5000 on the 8390

Updated ts4900-utils
= New util 8390adc for reading the low speed MCP
ADC
= Fixed tshwetl to support auto TX-EN RS485 on
ttymxcl

Updated to 3.10.53 kernel
= Significant fixes to GPU, UARTs, CAN and more.
= Added TS-TPC-8950 support
= Fixed 7" twinkling pixels on TS-8390 w/solo
= Included splash screen

Updated to Yocto Dizzy for new freescale GPU support
Added Chromium to default image (google-chrome)
Updated toolchain to match dizzy image

Included gstreamer in the image

Updated FPGA with crossbar, max3100 based spi uart,
bluetooth fixes (REV C only)

Fixed networkd
Enabled PCle in default kernel
= Added 1210 support for TS-7970

Added TS-7970 support

Updated to Yocto Fido
= Removed GTK3 packages to reduce image size
(GTK2 still available)
= Removed distcc from default environment
= Includes QT 5.4.3
= Included gtmultimedia, xcursor-transparent theme

Updated Kernel
= Includes fix for rare screen flip issues

71/75

7.2.2018 TS-7970 - Technologic Systems Manuals

ts-x11-image-tsimx6-20150821190815.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/yocto/fido/ts-x11-image-tsimx6-
20150821190815.rootfs.tar.bz2)

ts-x11-image-tsimx6-20151014183028.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/yocto/fido/ts-x11-image-tsimx6-
20151014183028.rootfs.tar.bz2)

ts-x11-image-tsimx6-20151221232637.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/yocto/fido/ts-x11-image-tsimx6-
2015122123263 7.rootfs.tar.bz2)

ts-x11-image-tsimx6-20160512161729.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/yocto/fido/ts-x11-image-tsimx6-
20160512161729.rootfs.tar.bz2)

ts-x11-image-tsimx6-20161116215413.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/yocto/jethro/ts-x11-image-tsimx6-
20161116215413.rootfs.tar.bz2)

ts-x11-image-tsimx6-20170301225516.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/yocto/morty/ts-x 1 1 -image-tsimx6-
20170301225516.rootfs.tar.bz2)

ts-x11-image-tsimx6-20170731205110.rootfs.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/yocto/morty/ts-x 1 1 -image-tsimx6-
20170731205110.rootfs.tar.bz2)

15.5.2 Debian Changelog

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

= Included significantly fixed support for the TS-7970

= 210 support is fixed, but some prototype boards
will need to be RMA'd
(https://www.embeddedarm.com/support/rma.php)
to get MACs assigned.

= All UARTs are now working

= Included tsmicroctl for reading the silabs ADC
(p10-12 4-20mA included)

= Included load fpga for software reloading fpgas
later after boot

Updated TS-4900 FPGA to have CTS/RTS fixed for
bluetooth, and corrected CTS/RTS polarity on the
max3100s

Corrected defconfig used in kernel
= Fixed WIFI and other modules

If used with the u-boot release from 10-14-2015 this
fixes the mac address for the smsc95xx

Fixed MAC address to use device tree as well as
parameter for the latest u-boot support.
Fixed tsgpio driver which was causing some incorrect
DIO sets.
= The WIFI driver uses tsgpio for toggling the
enable which also corrects the behavior of
ifdown/ifup wlanO0.

Added rsync and lighttpd-cgi support

Added 100kohm pullups to the onboard/offboard SPI
chip selects.

Updated to Yocto Jethro

Updates to QT 5.5

Updated to 4.1.15 based on Freescale/NXP's
imx _4.1.15 1.0.0_ga.

Added improved support for TS-TPC-7990
New tshwectl with crossbar support.

Updated to Yocto Morty 2.2.1 with the same
imx_4.1.15_1.0.0_ga kernel

Includes QT 5.7.1

Included additional alsa utilities

Updated to Morty 2.2.2
Included QT Quick 1.x/2.x support
Added support for TS-TPC-7990 REV C in kernel and
ts4900-utils
Updated kernel
= Fixed issue with ttyMAX* UARTs losing data or
requiring the user to transmit before it continues
to receive again
= Fixed issue with ttyMAX* loopbacks dropping
the first character
= Added wilc3000 support for TS-TPC-7990 REV
C WIFI

7275

7.2.2018

Image

debian-armhf-wheezy-20140929.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-wheezy-20140929.tar.bz2)

debian-armhf-wheezy-20141125.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-wheezy-20141125 tar.bz2)

debian-armhf-jessie-20160825. tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-20160825.tar.bz2)

debian-armhf-jessie-20150526.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-20150526.tar.bz2)

debian-armhf-jessie-20151008.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-20151008.tar.bz2)

debian-armhf-jessie-20160512.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-20160512.tar.bz2)

debian-armhf-jessie-20160512.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-20160512.tar.bz2)

debian-armhf-jessie-20170123. tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-20170123.tar.bz2)

debian-armhf-jessie-20170306.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-20170306.tar.bz2)

debian-armhf-jessie-20170327 .tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-20170327 .tar.bz2)

debian-armhf-jessie-20170419.tar.bz2
(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900-
linux/distributions/debian/debian-armhf-jessie-20170419.tar.bz2)

debian-armhf-jessie-20170731.tar.bz2

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications

TS-7970 - Technologic Systems Manuals

Changes

Initial Release

Updated kernel with significant fixes, see github
(https://github.com/embeddedarm/linux-3.10.17-
imx6/commits/master) for more information.
Included first TS-7970 FPGA

New kernel - 3.10.53 (from freescale's
3.10.53 1.1.0_ga) instead of 3.10.17.
= Fixed CAN dropped frames (just under 1% of
frames were dropped on 3.10.17)
= Fixed reported UART RX fifo overflows
= GPU fixes
= Kernel includes compiled in splash screen for
quick graphical response on boot

TS-TPC-8950 support added

New FPGA (crossbar added, bluetooth fixed, and
max3100 implemented)

Added bluez, wireless-tools, usbutils, nfs-common,
and pciutils into the image.

Added Openssh server (generates on first boot)

First update to Debian Jessie

Included kernel support for TS-7970 REV A
Updated to latest TS-4900 FPGA (20150603)
Included openssh, generates keys on first boot.
Remove /etc/ssh/*key* to regenerate.

Included latest ts4900-utils with TS-7970 support.

Fixed TS-7970 ttyMAX uarts (requires FPGA
update)

Fixed resolv.conf symlink to use resolvd
Updated to 3.14.52 kernel

Corrected TS-TPC-8950 calibration

Moved to 4.1.15 kernel

Updated Debian to latest Jessie changes

Added latest ts4900-utils with improved TS-TPC-
7990 support.

Added support for TS-7970 REV D hardware
Added support for TS-7990 REV B hardware

Fixed resolv.conf symlink
Added nfs-common
Cleaned up old temporary files

Fixed regression in TS-TPC-8950 support
Adds root.version to list image date

Fixed issue of missing U-boot splash screen disabling
the backlight on REV B boards.

Fixed potential issue with WIFI not being
recognized.

Added support for #T'S-DC799-SILO board.

73/75

7.2.2018 TS-7970 - Technologic Systems Manuals

(ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900- = Added support for TS-TPC-7990 REV C in kernel
linux/distributions/debian/debian-armhf-jessie-20170731.tar.bz2) and ts4900-utils
» Updated kernel
= Fixed issue with ttyMAX* UARTSs losing data
or requiring the user to transmit before it
continues to receive again
= Fixed issue with ttyMAX* loopbacks dropping
the first character
= Added wilc3000 support for TS-TPC-7990

REV C WIFI
15.5.3 Arch Linux Changelog
Image Changes
arch-armhf-20140929 tar.gz (ftp://ftp.embeddedarm.com/ts-socket-macrocontrollers/ts-4900- Initial
linux/distributions/arch/arch-armhf-20140929..tar.gz) Release
15.5.4 Ubuntu Linux Changelog
Image Changes
ubuntu-armhf-16.04-20160407 .tar.bz2 (ftp://ftp.embeddedarm.com/ts-socket-
macrocontrollers/ts-4900-linux/distributions/ubuntu/ubuntu-armhf-16.04- » Initial Release
20160407 tar.bz2)
= Bumped from 3.14.52 to 4.1.15
ubuntu-armhf-16.04-20160818.tar.bz2 (ftp://ftp.embeddedarm.com/ts-socket- kernel. This adds support for the TS-
macrocontrollers/ts-4900-linux/distributions/ubuntu/ubuntu-armhf-16.04- TPC-7990.
20160818.tar.bz2) » Added more common packages,
mmc, can-utils, etc.
ubuntu-armhf-16.04-20170306.tar.bz2 (ftp://ftp.embeddedarm.com/ts-socket- = Updated ts4900-utils for final TS-
macrocontrollers/ts-4900-linux/distributions/ubuntu/ubuntu-armhf-16.04- 7970/TS-TPC-7990
20170306.tar.bz2) = Added TS-TPC-7990 REV B support

15.5.5 Ubuntu Core Linux Changelog

Image Changes
ubuntu-core-16-2016-12-22.img.bz2 (ftp://ftp.embeddedarm.com/ts-socket-
macrocontrollers/ts-4900-linux/distributions/ubuntu-core/ubuntu-core-16-2016-12- » [nitial Release
22.img.bz2)

= Fixed boot scripts to work with
core updates
= Added support for the TS-4900
carrier board specific device
trees.
= Added support for the TS-7970
ubuntu-core-16-2017-04-21.img.bz2 (ftp://ftp.embeddedarm.com/ts-socket- = Added support for the TS-TPC-
macrocontrollers/ts-4900-linux/distributions/ubuntu-core/ubuntu-core-16-2017-04- 7990
21.img.bz2) = Updated Kernel
= Added ttyMAX* uart
support

= Added fixes from our
main Linux kernel to the
RTC driver

= Fixed ethernet timing

15.6 TS-7970 Errata

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 74/75

7.2.2018 TS-7970 - Technologic Systems Manuals

Issue Status Description

Early TS-7970 REV A boards may fail to boot if RS232 is connected before the board is
Workarounds | powered. A small amount of RS232 idle negative voltage leaks from the transceiver to the FET
RS232 prevents available, controlling the switched 5V. The FET will not toggle while the output has a negative voltage,
booting on REV A |fixed in REV |so the 5V rail never comes up. If this is a concern or if the issue is seen, we can rework the
B board to have a 2.50hm resistor from SW_5V to 5V_A on U47 pins 4 and 5. REV A boards
shipped after 01/13/2016 include this fix.

Boot is prevented

if the USB Device

port (not host) is |Fixed in
plugged in without |[REV C
the console enable

jumper.

If the console jumper is not installed the silabs has USB VBUS, but no data signals. This puts
the USB device into a locked up state while it waits to communicate on this bus. Due to this
lockup it is unable to monitor voltages and turn on the SW_5V to the reset of the board. The
fix is to disconnect VBUS from the silabs which is done on the REV C PCB. A cable without
VCC can be made to work around the issue, or submit an RMA.

16 Product Notes

16.1 FCC Advisory

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used properly (that is, in strict
accordance with the manufacturer's instructions), may cause interference to radio and television reception. It has been type tested and
found to comply with the limits for a Class A digital device in accordance with the specifications in Part 15 of FCC Rules, which are
designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this
equipment in a residential area is likely to cause interference, in which case the owner will be required to correct the interference at
his own expense.

If this equipment does cause interference, which can be determined by turning the unit on and off, the user is encouraged to try the
following measures to correct the interference:

Reorient the receiving antenna. Relocate the unit with respect to the receiver. Plug the unit into a different outlet so that the unit and
receiver are on different branch circuits. Ensure that mounting screws and connector attachment screws are tightly secured. Ensure
that good quality, shielded, and grounded cables are used for all data communications. If necessary, the user should consult the dealer
or an experienced radio/television technician for additional suggestions. The following booklets prepared by the Federal
Communications Commission (FCC) may also prove helpful:

How to Identify and Resolve Radio-TV Interference Problems (Stock No. 004-000-000345-4) Interface Handbook (Stock No. 004-
000-004505-7) These booklets may be purchased from the Superintendent of Documents, U.S. Government Printing Office,
Washington, DC 20402.

16.2 Limited Warranty

Technologic Systems warrants this product to be free of defects in material and workmanship for a period of one year from date of
purchase. During this warranty period Technologic Systems will repair or replace the defective unit in accordance with the following
process:

A copy of the original invoice must be included when returning the defective unit to Technologic Systems, Inc. This limited warranty
does not cover damages resulting from lightning or other power surges, misuse, abuse, abnormal conditions of operation, or attempts
to alter or modify the function of the product.

This warranty is limited to the repair or replacement of the defective unit. In no event shall Technologic Systems be liable or
responsible for any loss or damages, including but not limited to any lost profits, incidental or consequential damages, loss of
business, or anticipatory profits arising from the use or inability to use this product.

Repairs made after the expiration of the warranty period are subject to a repair charge and the cost of return shipping. Please, contact
Technologic Systems (https://www.embeddedarm.com/support/rma.php) to arrange for any repair service and to obtain repair charge
information.

Retrieved from "https://wiki.embeddedarm.com/w//index.php?title=TS-7970&0ldid=9096"

https://wiki.embeddedarm.com/wiki/TS-7970#Specifications 75/75

