
Implementation of a Control Architecture
for Networked Vehicle Systems �

José Pinto, Pedro Calado, José Braga, Paulo Dias,
Ricardo Martins, Eduardo Marques, J.B. Sousa

Department of Electrical and Computer Engineering,
University of Porto, Portugal – 4200-465.

Email:
zepinto,pdcalado,jose.braga,pdias,rasm,edrdo,jtasso@fe.up.pt

Abstract: This paper describes the layered control architecture and its software implementation
developed and used at the Underwater Systems and Technology Laboratory. The architecture is
implemented as a toolchain which consists on three main entities: DUNE onboard software,
Neptus command and control software and a common IMC message-based communication
protocol. The LSTS software toolchain has been tested throughout various field deployments
where it was used to control heterogeneous autonomous vehicles like AUVs, ASVs, UAVs and
ROVs in both single and multi-vehicle operations.

Keywords: Software Toolchain, Autonomous vehicles, Multi vehicle control, Marine systems,
Communication Protocol, Inter-Module Communication

1. INTRODUCTION

The Underwater Systems and Technology Laboratory
(LSTS) aims the creation of networked vehicles sys-
tems constituted by human operators, heterogeneous au-
tonomous vehicles and other sensing devices. The networks
composed by these systems are dynamic, in the sense that
both vehicles and operators come and go. Vehicles have
limited communication range and, as they move, commu-
nication and control links are created and destroyed at run-
time. By moving, vehicles can function as mobile sensing
and communication devices, eventually working as mules
of information and retrieving data from remote locations
of the world as seen in the example scenario of figure 1.

Moored sensors

Autonomous surface vehicle

Surface buoy

Navigation beacon

Oceanographic sensors

Moored sensors

Drifters

AUV
AUV

UAV
UAV

AUV
Localization

links

Communication

links

Sensing

links

UAV

Vehicles come and
go

Control station

Control station

Control station

Operators come and 
go

Data provisioning

Intervention 

AUV

Data mules

DTN

Mixed-initiative

interactions

Fig. 1. LSTS networked vehicle systems concept.

� The research leading to these results has received funding from
the European Commission FP7-ICT Cognitive Systems, Interaction,
and Robotics under the contract #270180 (NOPTILUS), and FCT
COMPETE under the contract #PTDC/EEA-CRO/104901/2008 -
(PERSIST).

LSTS has already built autonomous vehicles of different
types, namely Autonomous Underwater Vehicles (Madu-
reira et al. (2009)), Autonomous Surface Vehicles (Ferreira
et al. (2007)), Unmanned Air Vehicles (Gonçalves et al.
(2009)), and Remotely Operated Vehicles (Gomes et al.
(2005)). Some of these vehicles can be seen in figure 2.

In order to control these vehicle networks, it is necessary
to create software abstractions and protocols that can be
reused across the different devices for single and coopera-
tive operations. Its implementation must account for the
following needs:

(1) manage the on-board vehicle sensors and actuators,
and their use for autonomous navigation and control

(2) standardized communication among vehicles, commu-
nication gateways and operator consoles

(3) graphical interfaces for operator-vehicle interactions,
including mission planning and analysis.

(4) flexibility to adapt existing solutions and controllers
to new, still unforeseen robotic devices

To fulfill these requirements, we have developed different
tools that comprise the LSTS software toolchain: DUNE
onboard software, Neptus command and control software
and the IMC communications protocol.

DUNE: Unified Navigational Environment is the runtime
environment for vehicle on-board software. It is used to
write generic embedded software at the heart of the ve-
hicle, e.g. code for control, navigation, communication,
sensor and actuator access, etc. It provides an operating-
system and architecture independent platform abstraction
layer, written in C++, enhancing portability among dif-
ferent CPU architectures and operating systems.

The Inter-Module Communication (IMC) protocol, a
message-oriented protocol designed and implemented for



communication among heterogeneous vehicles, sensors and
human operators. DUNE itself uses IMC for in-vehicle
communication (Martins et al. (2009)).

Neptus is the command and control software used by
human operators to interact with networked vehicle sys-
tems (Dias et al. (2006)). Neptus supports different phases
of a mission’s life cycle: planning, simulation, execution,
revision and dissemination (Pinto et al. (2006)). Concur-
rent multi-vehicle operation is possible through specialized
graphical interfaces, which evolved through the years ac-
cording to the requirements provided by end-users.

Fig. 2. LSTS autonomous vehicles. From top left to bottom
right: Swordfish ASV, Adamastor ROV, LAUV and
Antex X03 UAV.

Similarities exist between this toolchain and the Robot
Operating System (ROS), Quigley et al. (2009), in the
sense that they both try to accomplish similar goals.
However, some aspects can tell them apart:

(1) Neptus provides configurable interfaces that can be
adapted for each type of autonomous vehicle, while
ROS has a single interface for all types of agents (ROS
visualization tools).

(2) Neptus has been tested in the field numerous times,
adopting feedback from different end-users with aca-
demic, industrial and military backgrounds.

(3) DUNE runs on a very small footprint (16 MB) and
was developed having embedded processors, with
limited capabilities, in mind. Which also makes cross-
compiling very straightforward. Cross-compiling ROS
demands some added effort (using eros for full cross-
compilation).

(4) DUNE can run on an operating system that has no
processes, such as RTEMS or eCos.

(5) On the other hand, ROS is open source and has
a contributing community helping to expand the
toolchain.

2. CONTROL ARCHITECTURE

In our view of networked vehicle systems, these are com-
posed by multiple components like vehicles, sensors, con-
trollers, human operators, operator consoles, communica-
tion devices, etc. In order to cope with all these different
network nodes, we use a layered approach in the control

of these systems and establish common interfaces for com-
munication and coordination between components, as seen
in figure 3. Each layer encapsulates lower-level details and,
at the same time, provides interfaces for retrieving state
and accepting commands.

Plan interface

Vehicle Interface

Maneuver interface

Guidance/Navigation

Platform interface

Plan supervisor

Loiter controllerGoto controller StationKeeping controller

NavigationGuidance

IMU driver CTD driver Thruster driver Fin servos driver

Vehicle Supervisor

Team Supervisor

Plan commands Plan state

Vehicle commands Vehicle state

Maneuver commands Maneuver state

Actuator commands Sensors state

Guidance commands Navigation state

Fig. 3. Example architecture implementation and possible
switching between active/inactive controllers.

All vehicles provide a platform with sensor and actuator
low-level interfaces that are used by guidance and navi-
gation software components. These components abstract
specific hardware details by providing standardized sensor
data together with a common command set for controlling
the desired vehicle behavior.On top of guidance / actu-
ation components, maneuver controllers receive current
vehicle state (produced by the navigation) and generate
intended behavior by producing guidance commands.

Maneuver controllers are instantiated and/or terminated
by a vehicle supervisor. The vehicle supervisor contin-
ually verifies that the system is working properly and
instantiates maneuver controllers according to requested
maneuver specifications. Prior to instantiation, the vehicle
supervisor may check if it is safe to execute a given ma-
neuver according to current vehicle state (battery levels,
hardware faults, etc) and may also terminate maneuver
execution in the event of hardware failure or any safety
violations.

The vehicle supervisor receives maneuver specification
commands from upper layers. These can be either a team
controller that commands maneuver execution in multiple
vehicles (by sending commands through network links), or
it can also be an on-board plan supervisor that, according
to a plan specification, triggers the execution of maneuvers
in the vehicle. Plan supervisors can use imperative plan
specifications or they can also be deliberative planners
that, from a set of specified high-level objectives, generate
maneuvers that must be executed in order to fulfill the
plan objectives. Plan specifications / high-level objectives
can be created by human operators through operator
consoles and then sent for execution.

Except for the hardware-specific platform layer, any other
layer follows common interfaces and this fact allows us
to have multiple instances of upper layer controllers. This
provides flexibility to have possibly interchangeable and
even migrating controllers at run-time.



In the following sections we describe the implementa-
tion of this architecture by the LSTS software toolchain.
This software toolchain is composed by on-board soft-
ware (DUNE), shore-side control software (Neptus) and
a communication protocol which is shared by all com-
ponents, the IMC inter-module communication protocol
(section 5).

3. DUNE: UNIFIED NAVIGATIONAL
ENVIRONMENT

DUNE is the on-board software running on the vehicle,
which is responsible not only for every interaction with
sensors, payload and actuators, but also for communi-
cations, navigation, control, maneuvering, plan execution
and vehicle supervision.

It is CPU architecture independent (Intel x86 or compat-
ible, Sun SPARC, ARM, PowerPC and MIPS) as well
as operating system independent (Linux, Solaris, Apple
Mac OS X, FreeBSD, NetBSD, OpenBSD, eCos, RTEM,
Microsoft Windows 2000 or above and QNX Neutrino).

Thanks to its modularity and versatility, DUNE does not
only run in our ASVs, ROVs, AUVs and UAVs, but also
in our communication gateways, LSTS (2011).

3.1 Modularity

DUNE functions as a message passing mechanism where
independent tasks run in a separate thread of execution.
All these tasks are connected to a bus to which they can
publish and subscribe to messages, that can be consumed
or published by other tasks. An example of a task is,
for instance, a sensor driver, that can publish a message
containing information about the sensor being read. This
information may later on be consumed by a task whose
purpose is to get the vehicle navigating in three dimen-
sional space (see figure 4). The same idea is valid for a task
that works as a motor controller, or power consumption
manager, and so on.

If a new sensor is installed, or a new controller is going
to be tested, all that is necessary is to enable and disable
some tasks. This high modularity makes life easier not only
for the everyday developer, but also for a newcomer or
temporary developer that will work on a certain module
of the software. That person can be abstracted from the
complexity of the remaining entities on the framework.

It is important to point out that the messages passed to
the bus are specified in the LSTS communication protocol,
the IMC (see section 5).

3.2 Profiles and Configuration

A task in DUNE may be common to more than one
vehicle. The same task may be able to run either in an
underwater vehicle or in an aerial vehicle, but configured
in a different manner. The set of parameters that tune
a task to function in a certain way are determined by the
configuration scheme. These configurations can be changed
easily with no need for software recompilation. It also
allows the enabling and disabling of tasks.

Fig. 4. Message passing concept behind DUNE tasks
implementation.

Moreover, DUNE can run with different profiles, that by
taking advantage of the configuration mechanism, enable
and disable sets of tasks for that profile purpose. For in-
stance, DUNE can run in Simulation mode, which disables
all the sensor and actuator drivers and replaces them with
simulating tasks. It may also run in Hardware-in-the-loop
mode, which allows for some sensor or actuator drivers to
be enabled, together with simulating tasks. These features
are very important from a developing perspective, since
they allow for “offline” task/feature testing and validation.

3.3 Implementation of the Control Architecture

The layers vehicle, maneuver, guidance, navigation and
platform Interface pointed out in section 2, have been
implemented using the DUNE framework. Therefore, all
the interactions present in figure 3, such as Maneuver
State, were implemented as messages, by using the mes-
sage passing scheme described earlier. The interfaces them-
selves are represented by one or more tasks. For instance,
the Maneuver Interface consists of a Maneuver Supervisor
task, plus one task per type of maneuver (Maneuver Con-
trollers). The Maneuver Supervisor task is always enabled
during vehicle operation, but only one of the Maneuver
Controllers is on, while the remaining are disabled.

4. NEPTUS COMMAND AND CONTROL
INFRASTRUCTURE

Neptus software is used by operators to visually plan,
simulate, monitor and review missions executed by au-
tonomous vehicles. Neptus provides user interfaces to con-
trol vehicles of different types like AUVs, UAVs, ASVs and
heterogeneous teams of the former simultaneously.

4.1 Mission Planning

In Neptus, a mission is specified as a set of maneuvers
(each with a specific type and parameters) and transitions
between those maneuvers, forming a graph. A maneuver
is thus a unit of work that can be accomplished by a
specific vehicle or a class of vehicles by instantiating a
controller that potentially changes the physical state of
the vehicle. A transition condition is a boolean expression
that can be evaluated against the vehicle state or triggered
by asynchronous events.

Since it is very common to create plans that are similar to
others used in the past, Neptus also provides a templating
mechanism which generates mission plans (for one or more



vehicles) based on parameters introduced by the user. This
was implemented by creating a plan generation API and by
creating javascript bindings for this API. New templates
can be created by adding respective javascript plugins.

Mission planning in Neptus can also be done visually
(figure 5). The graphical editor provides a map view of the
mission site and maneuvers can be added to this map (set-
ting possible location parameters) and edited. Moreover,
connections between maneuvers and any specific maneuver
parameters can also be edited in this graphical interface.
To verify a mission plan, usually the operator previews its
execution by using a simulator.

Fig. 5. Neptus console showing plan creation on top of the
mission site map.

4.2 Mission Simulation

Neptus provides three different levels of simulation ac-
curacy: behavior prediction, software simulation and
hardware-in-the-loop (HIL) simulation. Software simula-
tion is done by connecting to one or more simulated
vehicles running DUNE in simulation mode (sensor values
and actuations are simulated). Moreover, the simulators
can also be running inside actual vehicles and real sensors
/ actuators may be used together with simulated ones for
HIL simulation.

Software simulation and HIL simulation are usually em-
ployed for testing mission specifications and also to train
personnel prior to real-world deployments. HIL simulation
can also be used to test hardware in dry-run tests.

While a mission is being executed Neptus also provides
rough behavior simulations whenever the vehicles are
disconnected from the base. This is used to predict the
state of the vehicles while they are at remote locations and
thus aid the operator in managing the complex behavior
of vehicle fleets.

4.3 Mission Execution

Mission execution is supported by Neptus through the use
of operational consoles. From these consoles, operators can
monitor vehicle execution, quickly change or create new
plan specifications, send plans for execution, teleoperate
vehicles, etc.

Operational consoles can easily be adapted for the oper-
ation of specific vehicles or to a specific mission scenario.

In order to edit an operational console, users can chose
from a collection of plugin components (widgets, daemons)
and drag them onto the console frame. The components
can furthermore be grouped into layout containers for
preserving screen real estate. Optionally, users can create
more than one presentation layout and store them as
visualization profiles. Different profiles can be activated
by the operator according to mission execution phases like
deployment, operation, debug, recovery, etc.

Neptus operator consoles support multi-vehicle operations
by displaying received data from all vehicles and allowing
the user to switch between controlled vehicle. Since most of
the time these vehicles operate autonomously, this allows
the user to plan future missions while other missions are
being executed.

For safe operation, Neptus provides an alarm framework
composed by multiple daemons that continually monitor
the data being received by the vehicles. The user is notified
in events of interest like mission start, mission completion
and failures through different sensory cues. Figure 6 shows
the execution of an operational console used to control
UAVs.

Fig. 6. Neptus operational console for UAVs.

4.4 Mission Review and Analysis

LSTS vehicles store mission data as serialized streams of
generated and received messages. In order to be possible to
inspect and analyse these data, Neptus provides a special-
ized application (Neptus MRA) that decompresses data
into text files (that can be later imported to programs like
ExcelTMor MatlabTM) and provides several visualizations
and utilities to process and export data.

According to available mission data, different plots will be
rendered like vehicle estimated position, acoustic ranges,
Euler angles, conductivity, salinity, etc. Moreover, all data
is presented to the user in the form of table and any com-
binations of scalar fields can be plotted against time. Nep-
tus MRA provides also specialized visualization plugins
for viewing of side-scan data, log revision and colormaps
(bathymetric, temperature, salinity, . . . ).

Since all messages are time-tagged by the generating
system, MRA also allows the replay of mission data,
allowing the visualization of the vehicle’s execution of past
missions. Replay data can also be fed back into Neptus
operational consoles so that the entire mission can be
visualized using the console visualization widgets.



Using a plugin framework, Neptus MRA can also be used
to export mission data into different formats like comma-
separated values or PDF reports. We are currently working
on export plugins for NetCDF and KML file formats.

Fig. 7. Different Neptus MRA visualizations. On the left
bathymetry colormap and, on the right a side-scan
data plotter.

5. INTER-MODULE COMMUNICATION PROTOCOL

The IMC protocol (Martins et al. (2009)) is a message-
oriented protocol targeting networked vehicle and sensor
operations. IMC defines a common message set that is
understood by all systems and used for communication
between network nodes, DUNE tasks and Neptus plugins.
IMC is fully defined and documented in a single XML file
which can be translated into different language bindings
using XSLT. Figure 3 depicts a typical communication
flow among several layers of the control architecture inside
vehicles.

sync_number       0xFE40

msg_id             701

source               0x2031

destination  0x100B

crc_checksum  0x4F67

psi                   1.37021

header

payload

x_offset       143.98892

y_offset             9.901123

z_offset               2.5104

phi                   0.01214

theta     0.1234555

footer

Fig. 8. Example IMC message structure.

This layered control and sensing infrastructure is in line
with typical control infrastructures for autonomous vehi-
cles (Gerkey et al. (2003), Quigley et al. (2009)) which
enable modular development of robotic applications. Using
IMC, software components can run in logical isolation,
interfacing with other modules only through the exchange
of IMC messages. Moreover, a common message set strictly
defines the interfaces of the different types of components.

Networking of vehicles and consoles, is enabled through
traditional IP-based communication-mechanisms, like raw
UDP or TCP sockets, or by other means, such as the Real-
Time Publish-Subscribe protocol (Marques et al. (2006)),
or underwater acoustic modems (Marques et al. (2007)).
IMC also has established serialization standards for JSON
and XML which allows its use by any web-enabled devices
and frameworks.

All IMC messages are divided in header, payload and
footer. The header contains among other fields, a synchro-
nization number which allows us to detect different byte
order serializations and/or protocol versions; a message
identifier, a source and a destination. The message payload
varies according to the message identifier (as described by
the IMC protocol specification) and can also include other
(inline) messages recursively. To see a message example
consult figure 8.

6. TOOLCHAIN DEPLOYMENTS AND
DEMONSTRATIONS

The LSTS software toolchain has been the backbone of all
our operations since, as previously stated, this toolchain
guarantees communication among all our platforms and is
used to define the behavior of the autonomous vehicles.
During 2011, LSTS has successfully performed different
sea-trials with multiple vehicles working cooperatively,
amounting to a total of more than 100 hours of au-
tonomous operation. This section describes two demon-
strations of coordinated behavior achieved by the LSTS
toolchain.

6.1 Multi-vehicle operations

From 12th July 2011, a two-week underwater experiment
was carried out jointly with the Portuguese Navy near
Sezimbra coast (Portugal). The experiment, designated
Rapid Environmental Picture 2011 (REP 2011), aimed
at demonstrating the use of multiple LSTS vehicles to
acquire sidescan imagery simultaneously, while sharing
information among them.

Two underwater vehicles (LAUV-Seacon and LAUV-
Xtreme), the Swordfish ASV and unmanned aerial vehicles
(Cularis UAV) were operated simultaneously from the
Bacamarte navy ship.

Most notably, one Cularis UAV was used as a data
mule to gather information from a floating LAUV-Seacon,
afterwards delivering these data back to the control room
aboard the ship.

6.2 Cooperative maneuvers

On 7th July 2011, LSTS has carried out a series of tests
demonstrating cooperation between autonomous vehicles
using solely acoustic communication links (Teledyne Ben-
thos acoustic underwater modems).

In one of the experiments, nAUV was programmed with
a trajectory following plan while Swordfish ASV was
programmed with a plan that consists in following nAUV:
whenever a position estimate is received via the acoustic
modem, go to that position. As a result, Swordfish ASV
roughly followed the plan execution of nAUV and, in the
future, this behavior can be used to preserve a network link
from air to underwater (ASV working as communication
relay).

The second experiment consisted in having both vehicles
pre-loaded with formation following maneuvers. These ma-
neuvers are parameterized by a trajectory to follow and list
of formation participants (with respective offsets to the



trajectory). Periodically all participants (Swordfish ASV
and nAUV) share their state of completion with other
vehicle(s) and, as a result, remaining participants can
decrease/increase speed accordingly. This experiment suc-
cessfully demonstrated two autonomous vehicles sharing
information, such as their estimated states and the desired
paths, to perform cooperative maneuvers (see figure 9).

Fig. 9. LSTS nAUV and ASV Swordfish performing coop-
erative maneuvers.

7. CONCLUSIONS AND FUTURE WORK

The proposed control architecture has been successfully
implemented as the LSTS software toolchain and used
across multiple devices for single and multi-vehicle de-
ployments. Reusing tools like DUNE and Neptus, common
to all vehicles and operator consoles, not only prevented
duplication of effort but also allowed a faster development
of new vehicles and controllers.

The same behavior abstractions (maneuvers and plans)
have been successfully used to define the behavior of
AUVs, UAVs, ROVs and ASVs. By using cooperative
maneuvers and transition conditions in plans, we are able
to also define multi-vehicle coordinated behavior.

Currently, we are working towards the inclusion of delay-
tolerant networking functionalities in our vehicles and con-
soles. This will allow using the vehicles to actively extend
the network range by functioning as data mules. This
way, vehicles can carry both sensor data and commands
between remote network locations.

In the near future, we plan to add required security mech-
anisms into our networks for a safer operation workflow.
This involves handling varying authority levels, distinction
between vehicles and payloads, explicit control links and
handover of these links between operator consoles.

In another line of work, we are developing new planning
mechanisms for controlling these networks. In one hand we
are integrating existing deliberative planning mechanisms
(Py et al. (2010)) for decoupling objectives from lower-
level execution and, on the other hand, we are building
a new framework for the creation of IMC software agents
that are able to migrate and redefine the behavior among
the network.

In the future, and as a means of further testing the
robustness of the toolchain, we will continue to test it
in further single and multi-vehicle deployments and, as

possible, test continuous (24/7) operations at sea using
heterogeneous vehicles with limited endurance.

REFERENCES

Dias, P., Gonçalves, G., Gomes, R., Sousa, J., Pinto, J.,
and Pereira, F. (2006). Mission planning and spec-
ification in the neptus framework. In Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, 3220 –3225.

Ferreira, H., Martins, R., Marques, E., Pinto, J., Martins,
A., Almeida, J., Sousa, J., and Silva, E. (2007). Sword-
fish: an autonomous surface vehicle for network centric
operations. In OCEANS 2007 - Europe, 1 –6.

Gerkey, B., Vaughan, R., and Howard, A. (2003). The
Player / Stage Project : Tools for Multi-Robot and
Distributed Sensor Systems. In Proceedings of the 11th
international conference on advanced robotics, 317–323.

Gomes, R., Martins, A., Sousa, A., Sousa, J., Fraga, S.,
and Pereira, F. (2005). A new rov design: issues on
low drag and mechanical symmetry. In Oceans 2005 -
Europe, volume 2, 957 – 962 Vol. 2.

Gonçalves, G.M., Pereira, E., de Sousa, J.B., Morgado,
J., Bencatel, R., Correia, J., and Félix, L. (2009).
Unmanned air vehicles for coastal and environmental
research.

LSTS (2011). Manta user manual. http://whale.fe.up.
pt/manta/a300/Manta_A300_User_Manual_r1.pdf,
last accessed date: 7 March 2012.

Madureira, L., Sousa, A., Sousa, J.B., and Gonçalves,
G.M. (2009). Low cost autonomous underwater vehicles
for new concepts of coastal field studies. In 10th
International Coastal Symposium (ICS 2009).

Marques, E., Gonçalves, G., and Sousa, J. (2006). Seaware:
A publish/subscribe communications middleware for
networked vehicle systems. In Proc. IFAC Conference
on Manoeuvring and Control of Marine Craft (MCMC).
IFAC.

Marques, E., Pinto, J., Kragelund, S., Dias, P., Madureira,
L., Sousa, A., Correia, M., Ferreira, H., Gonçalves, R.,
Martins, R., Horner, D., Healey, A., Gonçalves, G., and
Sousa, J. (2007). AUV control and communication using
underwater acoustic networks. In Proc. IEEE Oceans
Europe. IEEE.

Martins, R., Dias, P., Marques, E., Pinto, J., Sousa, J.,
and Pereira, F. (2009). Imc: A communication protocol
for networked vehicles and sensors. In OCEANS 2009 -
EUROPE, 1 –6.

Pinto, J., Dias, P.S., Gonçalves, R., Marques, E.,
Gonçalves, G.M., Sousa, J.a.B., and Pereira, F.L.
(2006). NEPTUS – A Framework to Support the Mis-
sion Life Cycle. In 7th IFAC Conferent on Manoeuvring
and Control of Marine Craft. Lisbon, Portugal.

Py, F., Rajan, K., and McGann, C. (2010). A systematic
agent framework for situated autonomous systems. In
Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems: volume 2 -
Volume 2, 583–590.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R., and Ng, A. (2009).
ROS: an open-source Robot Operating System. In ICRA
Workshop on Open Source Software.


	100

