
DUNE Developer’s Helper
of sorts.

Topics covered:

● Introduction
● Tasks creation, management / threads
● IMC

○ subscribe
○ dispatch
○ receive
○ definition

● Control architecture
● Simulation & Replay
● DUNE core functions
● Periodic
● Entity State
● Output Messages

●
I18N

●
Doxygen

●
Git

●
Style Guide

DUNE: Uniform Navigational Environment

● For Embedded Systems
● C++
● Runs everywhere except wavys and fish tags (or in autopilots!)
● Tasks: isolated, dedicated threads, that do something and (hopefully) well
● Communication amongst tasks is achieved with IMC API
● What it does:

○ comms: TCP, UDP, acoustic modems, iridium, gsm
○ logging
○ integrates sensors, actuators and power devices
○ estimation filter(s)
○ controllers - from lower level (direct actuation) to higher level

Where does it start ?!

src/Main/Daemon.cpp
DUNE::Daemon daemon(context, options.value("--profiles"));

src/DUNE/Daemon.cpp

Tasks::Manager* m_tman;

m_tman = new DUNE::Tasks::Manager(m_ctx);
m_tman->start();

src/DUNE/Tasks/Manager.?pp
//! Running tasks.
std::map<std::string, Task*> m_tasks;

src/DUNE/Tasks/Manager.?pp

src/DUNE/Tasks/Manager.?pp

src/DUNE/Tasks/Task.?pp

DUNE::Tasks::Task.hpp

class Task: public AbstractTask
class AbstractTask public Concurrency::Thread

class Thread public Runnable

src/DUNE/Tasks/Task.?pp

DUNE::Tasks::Task.hpp

class Task: public AbstractTask
class AbstractTask public Concurrency::Thread

class Thread public Runnable

src/DUNE/Tasks/Task.?pp

DUNE::Tasks::Task.hpp

class Task: public AbstractTask
class AbstractTask public Concurrency::Thread

class Thread public Runnable

Thread management

In DUNE, there are at least N+1 threads where N is the number of tasks plus
the Daemon thread.

Each task can launch new threads

● Database access;
● Comms: HayesModem class; BasicModem class; HTTP; IridiumSBD;
● Sensors: BlueView, Echo Sounder,
● System shutdown commands: MantaPanel, Supervisors/Power

● Parameter “Execution Priority” is an index that distinguishes threads priority (default 10). The
higher, more priority it has

Thread management

The Operative System manages thread execution
Frequency is defined in a kernel parameter: CONFIG_HZ

In LAUV: 1000 Hz
i.e.: at each 1 ms, the scheduler changes running thread.

Atom CPU: 1000 Hz
IGEP: 100 Hz
BBB: 250 Hz
RPI: 1000 Hz

src/DUNE/Tasks/Task.?pp

● void onEntityReservation(void)
○ Task can reserve additional entities, i.e. additional source entity addresses.

● void onEntityResolution(void)
○ Task can resolve entities, i.e., get the source entity address of entities using entity label

(e.g: resolveEntity(“IMU”))

● void onResourceAcquisition(void)
○ Task can acquire resources (open serial ports, sockets, etc), instantiate objects

● void onResourceInitialization(void)
○ Initialize previously acquired resources (e.g: run configurations)

● void onResourceRelease(void)
○ Releases all acquired resources. Runs once after entities resolution and at the end.

● void onMain(void) / void task(void)
Main task loop - onMain for continuious tasks, task() for inherited periodic tasks.

Basic Functions

src/DUNE/Tasks/Task.?pp
Basic Functions

IMC: Why?

● To exchange information amongst Tasks (*)
● To log data (Data.lsf logs are stacks of IMC

messages)

How does it work ?

(*) we also use it to send external messages to other DUNE/NEPTUS systems

IMC: Subscribe messages: bind

With bind (and complement consume
function) we are subscribing the task
to a message type.

e.g: I want to receive all messages of
type EstimatedState

IMC: Subscribe messages: bind
Once task has subscribed to the
messages it can start receiving
them.

IMC: Send messages: dispatch

No subscription is required to send messages
to the bus. Any message is accepted.

To send messages to the network, dispatch is
used

Flags:
● DF_KEEP_TIME: do not override

timestamp
● DF_KEEP_SRC_EID: do not override

source entity id
● DF_LOOP_BACK: loopback message

to my consume

IMC: Send messages: dispatch

IMC
message id

Recipients
per id

IMC: Send messages: dispatch

Message is added to a queue controlled by
Recipient.

Recipient works as a mailbox where
messages stay waiting to be consumed.

IMC: Let’s receive: consume

In all tasks, during onMain execution, either waitForMessages() or consumeMessages() need to be called

IMC: Let’s receive: consume

Task consumes are called so that
messages can be processed

IMC: what is it?

Message Oriented Protocol - not a communication protocol, a messaging protocol

● One XML document defines all messages
● Generators for documentation, C++ and Java code
● Serialization/deserialization to/from:

– JSON
– XML
– Binary

● Serialized messages are used for logging and communication
● Binary serialization format can be translated to human-readable format (LLF)

IMC: definition

Addresses are partitioned in classes (AUV, UAV,
ROV, CCU, etc)

● Each system has a unique address (i.e., unique
number)

● Subsystems/submodules of a system are called
entities

● Each entity has a unique local number used to
further qualify a message (e.g., disambiguate
messages of the same type but different sources,
temperature from a CTD vs CPU Temperature)

IMC: anatomy described

OS Dune

Task 1 Task 2

IMC Message Bus

IMC message anatomy

Sync Num | Msg ID | Msg Size | Timestamp | Src Addr | Src Entity | Dst Addr | Dst Entity | Msg | CRC16

IMC version
e.g: Xplore-1

e.g: CTD

e.g: manta-1 /
0xFFFF
(broadcast)

0xFF

Control Architecture

Plans Maneuvers Guidance Autopilot Allocator Actuators

Control Architecture: LAUV

Plans Maneuvers Guidance Autopilot Allocator Actuators

Plan/Engine Plan/DB
Access to Plan
Database

Supervisor/Vehicle
Plan/Engine does NOT start any plans. It just makes requests
Supervisor/Vehicle handles requests: if all is OK: plan is started!
Supervisor/Vehicle keeps track of state of vehicle and
stops if anything is wrong

Control Architecture: LAUV

Plans Maneuvers Guidance Autopilot Allocator ActuatorsManeuvers

All maneuvers in
src/Maneuvers/*

public DUNE::Maneuvers::Maneuver

Special case!
Maneuvers/Multiplexer:

Goto,
Loiter,
StationKeeping,
PopUp,
Rows,
Elevator,
Dislodge,
FollowPath,
Launch

Control Architecture: LAUV

Plans Maneuvers Guidance Autopilot Allocator Actuators

controllers in
Control/Path/* (*)

(*) e.g: VectorField, ILOS, PurePursuit

public DUNE::Control::PathController

IMC
DesiredPath
EstimatedState

IMC
DesiredHeading
DesiredZ

BottomTracker IMC::Brake

Control Architecture: LAUV

Plans Maneuvers Guidance Autopilot Allocator Actuators

Control/AUV/Attitude

public DUNE::Control::BasicAutopilot

IMC
DesiredHeading
DesiredZ
EstimatedState

IMC::DesiredControl

DesiredHeadingRate
DesiredPitch

DesiredVelocity

Control Architecture: LAUV

Plans Maneuvers Guidance Autopilot Allocator Actuators

Control/AUV/AllocatorIMC::DesiredControl

IMC::SetServoPosition

Control Architecture: UAV

Plans Maneuvers Guidance Autopilot Pixhawk

Control/UAV/ArdupilotControl/UAV/LOS
Control/Path/Height

Simulation & Replay

Simulate vehicle kinematic and sensors measurements:

./dune -c lauv-xpto -p Simulation

Replay log of performed mission for navigation purpose:

./dune -c testing/replays/sgnav-replay // Starts replay, waits for IMC logged messages

./dune-sendmsg <ip> <port> ReplayControl 0 <path_to_log> // Send IMC logged messages

In dune/etc/testing/replays you may find more replays or even create your replay config file.

SIMULATION

REPLAY

DUNE core - Class database

Need something ?
Should that something exist already ?

1) Search

grep -ri “matrix” <path_to_dune_src>
- ./Maneuver/CoverArea/Task.cpp: Math::Matrix m_rows; // etc

2) Ask
a) jbraga@lsts.pt; trodrigues@lsts.pt
b) dune@lsts.pt
c) rasm@oceanscan-mst
d) lsts-toolchain@googlegroups.com

3) if it does not exist - implement

DUNE core - Class database

Hardware - Serial Port, GPIO, I2C, UCTK

Coordinates - Transformation between referentials, WGS84, UTM

Database - Connect, Run Statement, etc

IMC - To deal with IMC messages (parser, serialization, json)

Math - You cand find almost every math functions, matrix operations, derivative, etc

Network - TCP, UDP, TDMA, etc

Parsers - NMEAReader/Write, PlanConfigurations, etc

Time - Delay, Delta, Counter, etc

Utils - String, XML, NMEA parser, ByteCopy (big/little endian), etc

Periodic tasks

● Periodic class inherits from Task class
○ class Periodic: public Task

● onMain(void) calls virtual task(void) at a fixed (configurable) frequency.
○ Tasks can inherit from Periodic (instead of class Task) - the body

where implementation goes is task(void) instead of onMain(void)

● “Execution Frequency” is the argument that changes task frequency
(default: 1 Hz)

EntityState

Each Task has an associated entity state.

EntityState is the state of the task, that can be seen from HTTP server
(<ip>:8080)

Possible entity states:

● BOOT
● NORMAL
● FAULT
● ERROR
● FAILURE

When DUNE boots, all tasks are at BOOT state.
Depending on implementation and needs, the entity
state should be updated.

The most commonly used states are NORMAL and
ERROR

EntityState

● To change state use setEntityState

● Status is a class that translates codes into commonly used Strings.
○ Please check all codes in src/DUNE/Status/Codes.def

Output messages
● Do not use std::cout(), printfs() etc
● Tasks stream functions should be used

○ They guarantee messages are logged, and
○ written to the Output.txt file

● inf() // information
● war() // warnings
● err() // error messages

Debug (developer oriented) messages

● debug()
● trace()
● spew()

Debug Level = None // no messages are sent
Debug Level = Debug // only debug is sent
Debug Level = Trace // debug + trace
Debug Level = Spew // all debug goes

All these messages should implement DTR macro
e.g: inf(DTR(“running again”));

What is DTR macro ? I18N

in DUNE/Config.hpp.in:

It’s used to mark strings for internationalization

Folder <dune_source>/i18n has the implemented translations.

Fix translations:

in DUNE build folder run (check cmake/I18N.cmake for details):

1. make i18n_extract
2. make i18n_update
3. make i18n_compile

pt_PT translation outcome:

To fix: edit <path_to_dune>/i18n/pt_PT/LC_MESSAGES/dune.po file and rerun
commands. Then rerun i18n commands to validate and commit.

Doxygen: generating documentation

DUNE uses doxygen tags for documentation.
Each tag starts with ‘//!’

● @param[in] name <description> // input parameter
● @param[out] name <description> // output parameter
● @return <description> // function return

Please check:
src/Vision/DFK51BG02H/Task.cpp ‘//!’ tags and respective documentation.

Use //! to introduce member variables and describe task methods.
Everything else use ‘//’

Git - How to use

Git is used for software version control.

Good Practices

● Read: DUNE Git Manual (available on Drive)
● Read: Github wiki - Git: Introduction / Commit Messages / Releases
● Respect ALL of the rules above. You will adapt to us, not the other way around.
● Never commit compiled files
● Commit only files you have changed
● Do not commit files that will make dune uncompilable
● Never keep files checked out for too long
● Always update your working copy before start working
● When merging, do not fast forward
● Atomic commits

Style Guide

1. Respect the style guide.
2. Respect the style guide.
3. Respect the f**** style guide.

….

Seriously, follow the style guide but also look at other tasks’ programming and try to
follow it. It helps a lot when a project has several contributors if the style is somewhat
uniform - then it’s really easy to jump in, analyze and fix/add something.

Also, do not write everything into a single Task.cpp file. Identify and divide by
self-contained, well documented classes with clean and easy APIs.
e.g: Transports/Evologics, Transports/SUNSET, Sensors/Imagenex837B

The end.. relax

if you’ve reached the end of this presentation you’re either desperate or a fool.
Here’s the “easter egg”

Programming is a lot like sex. One mistake and you're providing
support for a lifetime.

