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Abstract: Knowledge of the amplitude and frequency of sea waves is useful to characterize
the sea state, and increases the situational awareness as perceived by unmanned marine crafts.
The ability to adapt navigation control parameters according to the current sea state is an
essential feature for vehicles whose motion is mainly governed by environmental forces. From
a control perspective, an estimate of the wave encounter frequency (WEF) can be used to
filter out first-order wave-induced motions that cause undesired rudder control action and servo
wear and deterioration. In this work we consider a nonlinear second-order observer capable
of computing the approximate frequency of a sinusoidal signal with unknown amplitude and
phase. This work presents the first experimental validation of the nonlinear estimator, which is
tested for the first time on a five meters long wave-propelled unmanned surface vehicle (USV).
Moreover, this article shows the estimator’s ability to characterize the dominant frequency of
wave spectra across different sea states and discusses two applications of the WEF estimation:
sea state estimation and wave-filtered steering control. Theoretical considerations are supported
with both simulation and experimental results.

Keywords: Maritime robotics; Guidance, navigation and control (GNC) of unmanned marine
vehicles (surface and underwater); Autonomous and remotely operated marine vessels

1. INTRODUCTION

Sea state estimation is of importance in marine opera-
tions. It provides information that can be used to increase
mission safety and reduce operational risk, but also to
enhance the seakeeping and autopilot system performance
of marine crafts whose motion is determined by sea waves,
ocean currents and winds. Estimation of the WEF can
be used to forewarn incoming impetuous waves and rough
environmental conditions.
For autonomous vehicles whose propulsion and course-
keeping capabilities mainly rely on environmental forces
(Johnston and Poole, 2017; Hine et al., 2009; L3-Technologies,
2019), the estimation of the encounter frequency is relevant
for two main reasons. First, it allows the vehicle to have in-
situ situational awareness of the operational environment.
Decision-making methods may benefit from estimates of
the sea state and synthesize high-level mission plans that
comply with the current condition of the environment.
Moreover, by combining onboard estimates with meto-
cean models it is possible to predict future sea states
and eventually re-plan or modify the mission accordingly.
Secondly, the estimated encounter frequency can be used
as cut-off frequency in filters employed in wave filtering
techniques for the rudder control command in a course-
keeping controller (Fossen, 2021).
Spectral analysis is a commonly adopted technique used to
study irregular waves and approximate them to a series of

sinusoidal components with different amplitude, frequency
and phase. This operation is commonly achieved by the
Fast Fourier Transform (FFT) algorithm, that applies the
Discrete Fourier Transform (DFT) on a window mov-
ing over the signal. This makes the transformation itself
affected by lag and the estimation of the time-varying
WEF based on obsolete data. Rather than estimating the
whole wave spectrum, the dominant frequency could be
observed instead and used for wave filtering. In addition,
more accurate techniques allow to estimate the direction
of incoming waves (Nielsen, 2006; Tannuri et al., 2003).
However, these are constrained by the same lag affecting
FFT and require a dynamic model of the vehicle, which
in this case is complicated to derive due to the wave-
propulsion assembly.
The signal-based method employed in this work is based
on Belleter et al. (2013), where it is demonstrated that roll
and pitch angles can be used to estimate the WEF. This
approach was further extended to include a variation of the
estimation algorithm that employs the heave displacement
measured onboard the vehicle (Belleter et al., 2015). The
same work, where the observer is tested on a container ship
whose model and hydrodynamic coefficients can be found
in Holden et al. (2007), contains the only experimental
data prior to the present manuscript.
This article describes the validation of the WEF estima-
tor on data collected by a wave-propelled USV (Dallolio
et al., 2019). The algorithm is validated with simulations
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Fig. 1. Sea state estimation supports high-level mission
planning and the GNC system onboard the USV.

and experimental results in both fjord and ocean waters,
proving its ability to converge in different sea states.
The originality of this work stands in the application of
a WEF observer to a small (5 meters long) USV, which
shows completely different wave response and motion than
a large ship, and which is never demonstrated before to the
best of our knowledge. Moreover, the paper presents the
first closed-loop field experiments employing this observer
in a course-control architecture.

2. SEA STATE ESTIMATION & WAVE FILTERING
ONBOARD WAVE-PROPELLED USV

The USV considered in this work is the AutoNaut 1 (Dal-
lolio et al., 2019), a wave-propelled vehicle designed for
persistent observation of the upper water column, achieved
with a wide-range scientific payload sampling several water
properties. The capability of performing long-endurance
operations comes with challenges related to navigation,
since the course and speed of the USV are mainly deter-
mined by environmental forces that, depending on the sea
state, may prevail on the propulsion generated from waves.
This motivates the need of a high-level entity capable of
estimating the current sea state based on onboard sensor
readings. Figure 1 indicates that, for example, sea currents
(C) and surface winds (W ) information can be merged,
together with an estimate of the WEF (ω̂e) and amplitude

(Â), and used to estimate the current sea state (S). More-
over, onboard decision-making entities can evaluate the
feasibility of the current mission and eventually modify or
re-plan the intended mission (e.g. desired course change)
to comply with the environment.
Figure 1 also indicates that the same estimated wave
information can be employed in the onboard guidance,
navigation and control (GNC) system for wave filtering
of the rudder command signal. This article refers to wave
filtering as the reduction of wave-induced control forces,
that are a combination of second-order slowly varying and
zero-mean first-order oscillatory components. Whereas the
former can be canceled by an integral action, the latter
may be removed from the measured motion states using a
band-stop (or similar) filter. As discussed in Fossen (2021),
precise knowledge of the encounter frequency allows better
tuning of these filters. The figure indicates that filters for

1 http://autonaut.itk.ntnu.no/doku.php

this purpose are usually placed between the autopilot and
the vehicle servo, producing a filtered version (δf ) of the
computed rudder angle (δ) that reduces wear of the servo
mechanism. It can also be configured to filter the course
measurement before it is used for feedback control.

3. HEAVE DYNAMIC MODEL

The heave motion of the USV can be modeled as a
linear second-order system with sinusoidal forcing, Fossen
(2021),

z̈ + 2ζωnż + ω2
nz =

F

m− Zẇ
sin(ωt+ ε) (1)

where ω is the modal (dominating) frequency of the waves,
z is the heave position, ωn in the natural frequency, ζ
is relative damping ratio, F/(m − Zẇ) is the wave force
divided by mass (including hydrodynamic added mass Zẇ)
and ε is the oscillation phase. We only consider the steady-
state solution

z =
F

(m− Zẇ)Zmω
sin(ωt+ ε+ φ) (2)

where Zm is the impedance or linear response function
and φ is the phase angle relative to the driving force F .
However, for a vehicle moving at ground speed U > 0, the
Doppler Shift causes the wave angular frequency ω to be
modified as

ωe(U, ω, β) = ω − kU cos(β) (3)

where ωe is the wave encounter frequency (WEF), k is the
wave number satisfying the deep water dispersion relation
ω2 = kg in which g is the acceleration of gravity and β
is the wave encounter angle (zero for following seas). The
wave number k relates to the wave length λ as k = 2π/λ.
This implies that the solution (2) can be reformulated as

z = A sin(ωet+ ε) (4)

where

A =
F

(m− Zẇ)Zmωe
, ε = ε+ φ (5)

are the amplitude and phase of the measured heave posi-
tion, respectively.

4. SWITCHING-GAIN WAVE ENCOUNTER
FREQUENCY ESTIMATION

The estimation problem aims at estimating online the
unknown frequency ωe of a measured time-varying signal
z given by (4), whose amplitude A and phase ε are not
known. The sinusoidal signal (4) can be represented by
the linear differential equation

z̈ = ψz (6)

where ψ := −ω2
e is the parameter to be estimated. As

indicated in Aranovskiy and Bobtsov (2012), the frequency
ωe is estimated using the auxiliary filter

ζ̇1 = ζ2
ζ̇2 = −2ωfζ2 − ω2

fζ1 + ω2
fz.

(7)

The filter cut-off frequency ωf has to be chosen so that
0 < ωe < ωf . The Laplace transformation of the linear
system (7) leads to the transfer function

ζ1(s) =
ω2
f

(s+ ωf )2
z(s) (8)



From (6) it follows that s2z(s) = ψz(s) and

z(s) =
2ωfs+ ω2

f + ψ

ω2
f

ζ1(s) (9)

The time domain representation of (9) is recognized as

z =
1

ω2
f

(
2ωfζ2 + ω2

fζ1 + ψζ1
)
. (10)

The parameter update law for ψ presented in Aranovskii
et al. (2007) makes use of the variable given by the
auxiliary filter

z′ := ζ̇2 = −2ωfζ2 − ω2
fζ1 + ω2

fz (11)

By denoting ψ̂ the parameter estimate and defining ẑ′ =

ζ1ψ̂, the parameter update law becomes

˙̂
ψ = kfζ1

(
ζ̇2 − ζ1ψ̂

)
, (12)

where kf is the adaptation gain obtained by low-pass
filtering the gain switching mechanism as described in the
next paragraph.
Global exponential stability of the equilibrium point of the
estimator is proven in Belleter et al. (2015), where it is
shown how the original fixed-gain estimation algorithm of
Aranovskii et al. (2007) can be modified to include a gain
adaptation algorithm, which depends on the estimated
heave amplitude Â.

4.1 Switching-gain mechanism

According to Belleter et al. (2013), we choose the switching
mechanism for the gain as

k(A) =


kinit if t ≤ tinit
kmin if t > tinit ∧A > A0

kmax if t > tinit ∧A ≤ A0

(13)

where A is the signal amplitude, A0 is the amplitude used
to switch gains, and tinit is the time duration in which the
gain is in its initial value. The amplitude A of the measured
signal cannot be directly computed. However, the ampli-
tude can be estimated using the squared measurement

z2 =
A2

2
(1− cos(2ωet+ 2ε). (14)

Consequently, by low-pass filtering the signal (14), the
amplitude A2/2 of the squared measured signal z2 is
obtained

γ =
1

Ts+ 1
z2, (15)

where T > 0 implies that the estimate of amplitude
becomes

Â =
√

2γ. (16)

The adaptation gain kf (t) is obtained by low-pass filtering

k(Â) according to

Tf k̇f + kf = k(Â), (17)

where Tf > 0 is recognized as the switching time constant

and k(Â) ≤ max(kmax, kinit).

4.2 Preliminary considerations

In this work we assume that the wave amplitude is similar
to the heave amplitude of the USV (unitary transfer func-
tion in heave). Hence we use the heave amplitude measured

by the GPS placed at the bow, after a transformation to
the vehicle’s BODY frame (located in the CG). The homo-
geneous transformation does not affect the measured heave
period of the USV, but it uses the knowledge of lever arm
and Euler angles to compute the heave in BODY frame,
which shows intuitively a lower amplitude. For the purpose
of WEF estimation, the effects of sensor location and
lever arms can be neglected since it is primarily the time
between peaks that contains information. Alternatively, it
is possible to estimate the USV heave displacement from
the vertical acceleration (z̈) measured by the IMU (Bryne
et al., 2018), as indicated in Figure 1.
For wave periods in the interval 5 < Tw < 20 seconds, the
modal frequency f of a wave spectrum will be in the range
0.05 < f < 0.2 Hz. Therefore, the wave circular frequency
ω = 2πf is in the range of 0.3 < ω < 1.3 rad/s. Fast and
irregular waves are expected in fjords, where a reduced
wind fetch generates short-crested waves whose amplitude
and frequency are mainly dependent on the local wind
speed. Typical fjord waves show therefore spectra with
higher dominant frequencies ω > 1.3 rad/s. Depending
on the sea state, the measured speed over ground (SOG)
of the USV may fluctuate between 0.5 and 2 knots (ap-
proximately 0.25 to 1 m/s). Figure 2 shows how the WEF,
computed as in Equation (3), varies according to variations
in waves encounter angle (β), vehicle ground speed (U) and
wave frequency (ω). As the wave direction and frequency
are not directly measured, assumptions needs to be made
according to weather forecasts.
The natural frequency of the USV heave motion is com-
puted using standard methods from hydrostatics (Fossen,
2021). Assume that the added mass −Zẇ = m. Hence,

ωn =

√
ρgAwp

2m
, (18)

where Awp is the waterplane area and ρ is the seawater
average density 1025 kg/m3. An estimate of ωn can be
found by approximating the USV as a box for which
Awp = LB (length times beam). Furthermore, the mass
m of a box-shaped USV is m = ρLBTUSV where TUSV is
the draught. Hence,

ωn ≈
√

g

2TUSV
, (19)

Fig. 2. Expected WEF perceived by the USV based on
varying ground speed U , encounter angle β and wave
frequency ω.



Table 1. Estimator Parameters

Parameter Symbol Value

Switching time constant Tf 0.05 s
Filter cut-off frequency ωf 1.5 rad/s

Initial frequency ω̂init
e 0 rad/s

Switching amplitude A0 0.5 m
Initialization time tinit 200 s

Adaptation gains (S1) kS1
f 10,5,25

Adaptation gains (S2) kS2
f 25,10,50
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Fig. 3. Top: heave displacement (zBm). Bottom: USV
ground speed (Um).

The vehicle draft TUSV = 0.3 m (0.7 m including the
submerged struts and hydrofoils) gives ωn = 4.1 rad/s,
which corresponds to a heave period of approximately 1.5
seconds. Hence, the natural frequency is far away from the
WEF and resonance situations are avoided.

5. OFFLINE EXPERIMENTAL VALIDATION

The estimated encounter frequency is compared to the
dominant frequency observed with spectral analysis (FFT).
Moreover, we compute and compare the average frequency
of heave peaks measured by the GPS. This does not indi-
cate the dominant frequency of the asymmetric wave spec-
trum and therefore we expect the frequency ω̂e estimated
by the observer to be higher. Tables 1 and 2 contain the
employed estimator parameters, where ω̂init

e is the initial
WEF.

5.1 Experimental validation in the Norwegian Sea

The estimation algorithm was first tested on data collected
in the ocean, 40km north-west of the island Frøya situated
along the coasts of Central Norway. We focus on a 100
minutes long portion of the collected data in which there
is an increase of USV ground speed from 0.4 m/s to 0.7 m/s
on average. The red dashed line in Figure 3 indicates
the separation before and after the speed increase. The
estimator is run with parameters indicated in Table 1.
Figure 4 shows the WEF (ω̂e) estimated with different
sets of gains (S1, S2) and same initial value (ω̂init

e ) for the
estimation. The estimation results are compared to the av-
erage frequencies (ω̄P

e , yellow lines) obtained by computing
local maxima of the heave signal (zBm in Figure 3), on both
trajectory legs. Local maxima are data samples that are
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Fig. 4. Estimated WEF with different gains sets (ω̂S1
e ,

ω̂S2
e ), as compared to average frequency computed

from heave peaks (ω̄P
e ).

larger than its two neighboring samples. It can be noticed
that the set of higher gains (S2) allows the estimator
to converge faster (ω̂S2

e ) to approximately 1 rad/s and
1.2 rad/s and that the estimation trend resembles the av-
erage frequencies computed in each leg. Higher estimated
values are however observed since the estimator extracts
the peak in the spectrum. Ground truth is obtained with
FFT spectral analysis (Figure 5), that reveals higher peaks
around the estimated frequencies observed in Figure 4, and
proves the ability of the observer to estimate dominant
frequencies in both spectra.

5.2 Experimental validation in the Trondheim Fjord

Figure 6 shows the heave measurement collected while
the USV executed autonomously a squared trajectory in
Trondheimsfjord. The estimator was run with parameters
indicated in Table 2 and same sets of gains of Table 1.
Figure 7 shows the estimated WEF for both gain sets and
compares it to the average frequency measured from the

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 5. FFT indicates the range of frequencies present in
the heave signal zBm. Top: before wind speed increase.
Bottom: after wind speed increase.



Table 2. Estimator Parameters

Parameter Symbol Value

Switching time constant Tf 0.05 s
Filter cut-off frequency ωf 4 rad/s

Initial frequency ω̂init
e 2 rad/s

Switching amplitude A0 0.2 m
Initialization time tinit 200 s
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Fig. 6. Heave displacement in body frame (zBm); red dashed
lines indicate change in desired course.

heave signal. Even if the convergence speed is increased by
setting the initial frequency to 2 rad/s, it is observed that
the amount of data collected in the first trajectory leg is
not enough to achieve convergence. Again the use of a set
of higher gains (S2) leads to a faster convergence.
FFT in Figure 8 shows richer spectra with frequencies in
the range of 1.5 and 4 rad/s. It can be noticed that the
frequencies at which the estimator converges (Figure 7)
match, in each section of the trajectory, with the peaks
observed in FFT spectral analysis. Moreover, wave spectra
do not contain significant energy at lower frequencies,
indicating predominance of irregular waves on swell com-
ponents.

6. WAVE-FILTERED STEERING CONTROL

The estimator was implemented on the USV onboard
navigation software DUNE (Pinto et al., 2012) and tested
during open ocean operations. The observer ran at regular
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Fig. 7. Estimated WEF with different gains sets (ω̂S1
e ,
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e ), as compared to average frequency computed

from heave peaks (ω̄P
e ).
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Fig. 8. FFT spectral analysis indicates the range of fre-
quencies present in the heave signal zBm, for each
trajectory section.

time intervals with initial frequency ω̂init
e obtained from

the previous run. Once estimation stabilized to a range of
values, the estimated WEF was used to filter the rudder
angle signal computed by the course autopilot as shown in
Figure 1. The course-keeping autopilot used in this mission
is a PI controller with gains Kp = 1 and Ki = 0.1. Wave
filtering is achieved with a first-order low-pass filter with
cut-off frequency ωLP = nω̂e where n = 1.2 is chosen
in order to remove only high-frequency components. The
filter cut-off frequency is computed from an estimated
WEF ω̂e = 1.12 rad/s. Figure 9 compares magnitude and
phase of the closed-loop transfer functions (from course
reference to course) with and without the filter, HLP (s)
and H(s) respectively. This analysis assumes that the
USV’s steering dynamics is represented by a first-order
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Fig. 9. Bode plots of the closed loop transfer functions with
(HLP (s)) and without (H(s)) low-pass filter.
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Nomoto model (Fossen, 2021) with parameters identified
in Agdal (2018). It can be observed that the systems show
the same response at high frequencies and a negligible
difference up to 2 dB in magnitude and 4◦ in phase at
low frequencies.
Figure 10 shows the rudder response when the low-pass
filter is applied at time t = 265 s (red dashed line). The
suppression of high frequencies is clear, despite the am-
plitude of rudder oscillations (bounded to approximately
10◦) is not affected. This indicates that the control band-
width of the system was not significantly reduced (as the
Bode plot confirms) and that despite the suppression of
undesired wave-induced frequencies the autopilot is still
able to command large oscillations to adjust the USV’s
course. While the rudder angle (δ) is logged onboard the

USV, angular velocity (δ̇) and acceleration (δ̈) are obtained
offline. Figure 10 shows that the amplitude of the rudder
angle velocity oscillations reduces of approximately 61%
after the application of the filter. This increases the mech-
anism lifetime since prolonged use of the rudder at higher
angular velocities is what wears the servo mechanism the
most. Angular acceleration oscillations are instead damped
by 89% of their average value when the filter is introduced,
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Fig. 11. Measured (χm) and desired (χd) course over
ground, before and after filtering (red dashed line).

also limiting rudder jerks and therefore the stress on the
mechanism. From a course-control perspective, Figure 11
shows that course-keeping performance is not impacted
once the filter is introduced in the control loop, since
similar course oscillations (with amplitude within 15◦) are
observed before and after the application of the rudder
signal filter at time t = 265 s.

7. CONCLUSION

In this article we discuss the validation of a nonlinear
WEF estimator, which is tested on experimental data col-
lected by a 5 meters long wave-propelled USV during field
campaigns in the fjord and in the ocean. The estimated
WEF is compared to the dominant frequency obtained
with FFT, used as ground truth, and to the average fre-
quency observed in the USV’s heave measurement. Offline
experimental results prove the ability of the observer to
identify the dominant frequency in different waves spectra
(ocean and fjord). Online use of the estimator onboard the
USV is shown and experimental results clearly indicate the
benefits of using the discussed algorithm for wave filtering
of the rudder command from the course-keeping autopilot.
The obtained results show the benefits of using the WEF
estimator for the computation of the dominant frequency
of wave encounters, due to its lower computational needs
as compared to FFT and search for local maxima in the
heave measurement. Moreover, the use of the estimated
WEF for wave filtering of the rudder command implies
a significant suppression of the USV’s rudder motions
at higher frequencies. However, this does not involve an
amplitude reduction in the rudder’s commanded angles,
allowing the onboard controller to maintain course-keeping
performance. On the other hand, significant reduction of
wave-induced motions of the servo reduces wear and stress
while increasing the mechanism lifetime.
Sustained autonomous control is still an open challenge
and even more so under the highly dynamic environmen-
tal changes experienced by an USV. Commanded and
generated plans would likely be invalid during sustained
exploration, relying on shore-based operators for support
with new or modified mission goals. This, together with the
fact that communication with shore could be sporadic and
costly over expensive satellite links, motivates the need for
the system to be self aware, robust to operational risks and
failures, and therefore capable to generate its own goals.
In this article we indicate how the estimated WEF can
additionally be used onboard a small USV to increase its
situational awareness about the environment, by merging
this knowledge with onboard sensors measurements and
eventually re-planning the USV’s intended route.
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